
Secure Provision and Consumption
in the Internet of Services

FP7-ICT-2009-5, ICT-2009.1.4 (Trustworthy ICT)

Project No. 257876

www.spacios.eu

Deliverable D3.1
Test Case Generator

Abstract
This deliverable describes the automated reasoning techniques for test case genera-
tion developed within the SPaCIoS project. In particular, we present the approaches
developed in SPaCIoS for both property-driven and vulnerability-drive test case gen-
eration. Moreover, we identify some directions of interest for future research and
development.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 03.10.2013 Due on: 30.09.2013
Editors: all Total pages: 49

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INP, KIT/TUM, UNIGE, SAP, Siemens, IeAT

http://www.spacios.eu
www.spacios.eu

D3.1: Advanced Test case generation techniques 2/49

(this page intentionally left blank)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 3/49

Contents
1 Introduction 6

2 Property-driven test case generation 7
2.1 LTL separation . 7

2.1.1 Syntax and Semantics of LTL 9
2.1.2 LTL Separation . 11
2.1.3 Safety and Liveness . 13
2.1.4 A right invariance equivalence relation on Σω 14
2.1.5 Canonical Separation . 15
2.1.6 Closure and Decomposition 20
2.1.7 Characterizing Liveness and Safety 21
2.1.8 Characterizing Stability, Absolute Liveness, and Fairness . 22

2.2 SATMC abstract attack trace generation 25
2.2.1 SAT-reduction technique for First Order Linear Temporal

Logic . 25

3 Vulnerability-driven Test Case Generation 29
3.1 Abstract Attack Trace (AAT) prioritization 29
3.2 Model mutation . 30
3.3 Prioritizing attack traces with SATMC 32

3.3.1 Enhancing the SATMC approach 33
3.3.2 From SAT to Weighted Max-SAT 34
3.3.3 Multiple attack traces generation 34

4 Conclusion 36

A ASLan mutation operator disabling fresh nonces,
FreshnessFlaw_weights.xsl 37

B low level AVANTSSAR Specification Language (ASLan) specification
of the NSPK protocol with Lowe’s fix 41

References 48

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 4/49

List of Figures
1 Reduction to UNSAT . 25

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 5/49

List of Acronyms
AAT Abstract Attack Trace . 3

ASLan low level AVANTSSAR Specification Language 3

ASLan(++) low(high) level AVANTSSAR Specification Language 29

DSFlaw Data Sanitization Flaw . 31

FA Fact Assertion . 31

LTL Linear Temporal Logic .25

SUT System Under Test . 29

XML eXtensible Markup Language . 30

XSLT Extensible Stylesheet Language Transformation 30

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 6/49

1 Introduction
In this deliverable, we present the techniques and technologies involved in the
advanced, automatic generation of test cases in the SPaCIoS project. Since test
case generation is a core activity in SPaCIoS, we carried out considerable work
to improve the existing approaches and, in the third project year, we investigated
the different automated test case generation techniques considered in the project,
along with possible extensions.

In Section 2, we describe the work done on property-driven test case gener-
ation. More specifically, Section 2.1 describes the research carried out on LTL
separation for the manipulation of LTL goals, whereas in Section 2.2 we recall
the results obtained about the application of the model checker SATMC to the
analysis and verification of models carrying LTL properties.

In Section 3, we describe the investigation a novel technique for vulnerability-
driven test case generation mainly dealing with attack traces prioritization (Sec-
tion 3.1). In particular, we present a new approach for obtaining attack traces
according to an ordering relation. Ordered attack traces can be exploited for prior-
itizing test cases. Hence, a suitable model mutation procedure is described in Sec-
tion 3.2. Mutated models are subsequently processed through SATMC (cf. Sec-
tion 3.3) in order to obtain corresponding abstract attack traces.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 7/49

2 Property-driven test case generation
In this section we report the advanced techniques for property-driven test case
generation. Most emphasis is about linear temporal logic which is used for the
formalization of security goals.

2.1 LTL separation
Linear temporal logic [19, 20], abbreviated to LTL, is a common language for
specifying, and reasoning about, the behavior of reactive systems.

We introduce the notion of canonical separations in order to strengthen Gab-
bay’s LTL separation theorem [10]: Gabbay shows that any LTL formula is se-
mantically equivalent to a Boolean combination of finitely many LTL formulae,
each of which refers either strictly to the future, strictly to the present, or strictly to
the past. We show that any formula in its separated form can be transformed into
a syntactically uniform formula. That is, there is a canonical separation for any
LTL formula. This allows us to constructively prove that any LTL property can be
decomposed into a safety property and a liveness property, both of them in LTL,
thus extending the result of Alpern and Schneider in [4] which shows that any
LTL property can be decomposed into a safety property and a liveness property,
both of them being ω-regular languages.

Related Work

Any execution of a reactive system can be seen as an infinite sequence of states,
events, assertions, etc. A property is a set of executions. Two significant types of
properties are safety and liveness properties, first introduced by Lamport [13], and
later formalized by Alpern and Schneider [3]. Many system verification and val-
idation methods are restricted to safety and liveness properties (safety properties
can be tested, while liveness properties cannot), and safety and liveness require
different proof techniques (see, e.g., [4, 14]).

Linear temporal logic, LTL [19, 20], is often used for reasoning about con-
current programs. Consequently, recognizing and characterizing safety and live-
ness in LTL, apart from its theoretical significance, has practical implications.
Sistla [21, 22] characterized safety, stable, absolute liveness, fairness, and other
properties in LTL without past temporal connectives, provided algorithms to rec-
ognize safety and liveness in LTL without past, and characterizes various proper-
ties in less expressive sub-logics of LTL. We characterize safety, stable, absolute
liveness, fairness, and liveness, which Sistla left as an open problem, in LTL with
past temporal operators, by reducing the problem of recognizing these properties
to the satisfaction problem for LTL. We also adapt Sistla’s formalization of stable

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 8/49

properties [22] to LTL with past temporal connectives. Lichtenstein et al. [15]
characterize safety and liveness in LTL with past temporal operators, but they
use a different notion of liveness than we do, which does not conform with the
formalization by Alpern and Schneider [3].

A result of Alpern and Schneider [3] (Corollary 1.1) states that if a formalism
F is closed under complement, intersection, and topological closure, then any
property expressible in F is the intersection of an F -expressible safety property
and an F -expressible liveness property. In [4], Alpern and Schneider show that
ω-regular expressions (ie. Büchi automata [7]) satisfy these conditions and can
therefore be decomposed as an intersection of a liveness ω-regular expression and
a safety ω-regular expression. We constructively show that LTL is closed under
topological closure. Since LTL is closed under intersection and complement (con-
junction and negation, respectively), it then immediately follows that any property
that is expressible as an LTL formula is the intersection of a safety and a liveness
property, themselves expressible as LTL formulae. Lichtenstein et al. [15] use sep-
aration to rewrite LTL formulae in a safety-liveness normal form, but this does not
decompose properties in the sense of Alpern and Schneider [3] since Lichtenstein
et al. use a different formalization of liveness.

To prove these results, we use a proof technique based on Gabbay’s separation
theorem for LTL [10], which states that every LTL formula is semantically equiv-
alent to a Boolean combination of finitely many LTL formulae, each of which
refers either strictly to the future, strictly to the present, or strictly to the past.
Moreover, Gabbay presents an algorithm for separation. We use this algorithm
to construct, for any LTL formula ϕ, a formula we call the canonical separation
of anchored ϕ, which we use to reduce the problem of recognizing safety, live-
ness, stable, absolute liveness, and fairness properties to the satisfaction problem
for LTL. The canonical separation of anchored ϕ induces a right invariant equiva-
lence relation ≈ϕ on the set of traces, i.e. finite executions. Finite traces t and u are
equivalent, with respect to ≈ϕ, if and only if for every infinite execution π either
both tπ and uπ satisfy ϕ, or both falsify ϕ; cf. the Myhill-Nerode theorem for reg-
ular languages [17]. We use this equivalence relation to constructively prove that
the topological closure of a property defined by an LTL formula is also definable
by an LTL formula. This gives us an algorithm for decomposing LTL formulae
into a conjunction of a safety LTL formula and a liveness LTL formula.

Road map

In Section 2.1.1, we introduce the syntax and semantics of LTL, and in Sec-
tion 2.1.2 we recall Gabbay’s separation theorem. In Section 2.1.3, we introduce
safety and liveness, their topological characterizations, and the decomposition the-
orem for ω-regular properties. In Section 2.1.4 we introduce a right-invariant

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 9/49

equivalence relation on the set of all non-empty finite traces. In Section 2.1.5, we
define the canonical separation and show its connection to the previously defined
right invariant equivalence relation. In Section 2.1.6, we use this connection to
prove that LTL is closed under topological closure and that it has a safety-liveness
decomposition. In Section 2.1.7 we use canonical separation to characterize live-
ness and safety LTL properties, and in Section 2.1.8 we characterize stable, abso-
lute liveness and fairness LTL properties.

2.1.1 Syntax and Semantics of LTL

We define the syntax and semantics of LTL with both past and future temporal
connectives, initial and global equivalence of LTL formulae, the notions of past,
present and future LTL formulae, and we recall Gabbay’s separation theorem. Our
definitions in this section are standard, e.g. see [10, 12, 16].

Definition 1 (LTL Syntax). Let AP be a finite set of atomic propositions. The
syntax of LTL is given by the grammar

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | ϕ | #ϕ | ϕSϕ | ϕU ϕ,

where a ∈ AP.

We use the usual syntactic sugars: ⊥ stands for ¬>, ϕ ∧ ψ stands for ¬(¬ϕ ∨
¬ψ), ϕ → ψ stands for ¬ϕ ∨ ψ, ^ϕ stands for >U ϕ, �ϕ stands for ¬^¬ϕ, _ϕ
stands for >Sϕ, and �ϕ stands for ¬_¬ϕ.

Let Σω be the set of all countably infinite sequences over the alphabet Σ = 2AP.
Any element of Σω is a path. We reserve the word trace for the elements of Σ+,
the set of finite non-empty words over Σ. For a path π = p0 p1 p2 . . . we define its
prefix πi as the trace p0 p1 · · · pi, and we define its suffix πi as the path pi pi+1
A property is a set of paths.

Definition 2 (LTL Semantics). For a path π = p0 p1 p2 . . . and i ∈ N0, the satisfac-
tion relation for LTL formulae is defined inductively over the formula structure:

π, i |= >
π, i |= a if a ∈ pi

π, i |= ¬ϕ if π, i 6|= ϕ
π, i |= ϕ ∨ ψ if π, i |= ϕ or π, i |= ψ
π, i |= ϕ if i > 0 and π, i − 1 |= ϕ
π, i |= #ϕ if π, i + 1 |= ϕ
π, i |= ϕSψ if there is a j ≤ i such that π, j |= ψ

and π, k |= ϕ for all j < k ≤ i
π, i |= ϕU ψ if there is a j ≥ i such that π, j |= ψ

and π, k |= ϕ for all i ≤ k < j

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 10/49

When π, i |= ϕ, we say π satisfies ϕ at time i. Any LTL formula ϕ defines a property
L(ϕ) = {π ∈ Σω | π, 0 |= ϕ}. �

In Section 2.1.2 we need the notions of past and future formulae. Below, we
define these notions syntactically. Then, we show that the syntactical definitions
satisfy the semantic conditions: any future (respectively past) formula is indepen-
dent of the past (respectively the future).

Definition 3. We define present, past, future, and strict future formulae:

• The syntax of present LTL formulae is given by the grammar

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ , where a ∈ AP.

• The syntax of past LTL formulae is given by the grammar

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕSϕ , where a ∈ AP.

• The syntax of future LTL formulae is given by the grammar

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | # ϕ | ϕU ϕ , where a ∈ AP.

• If ψ = #ϕ, where ϕ is a future formula, or ψ ∈ {>,⊥}, we say that ψ is a
strict future formula.

�

We refer to the set of future LTL formulae as FLTL. Lemma 4 below intu-
itively states that the satisfaction of past formulae is independent of changing the
future, the satisfaction of future formulae is independent of changing the past, and
the satisfaction of strict future formulae is independent of changing the past or
present.

The proof of the lemma is straightforward by induction on the structure of
past, future and strict future formulae.

Lemma 4. Let F be a future formula, P be a past formula and S be a strict future
formula. Then for every i ∈ N0 and every path π ∈ Σω we have:

1. π, i |= F iff tπi, |t| |= F, for every trace t ∈ Σ+ of length |t|.

2. π, i |= P iff πiσ, i |= P, for every path σ ∈ Σω.

3. π, i |= S iff txπi+1, |t| |= S , for any trace t ∈ Σ+ and x ∈ Σ.

�

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 11/49

Lemma 4 allows us to use the following notational conventions in the remain-
der of the paper: for a strict future formula S , we write xπ, 0 |= S to emphasize
that the initial x ∈ Σ can be arbitrary. For a past formula P and a trace t ∈ Σ+, we
write t |= P for tπ, |t| − 1 |= P, where π is arbitrary.

Now we define two equivalence relations on LTL formulae.

Definition 5. Let ϕ and ψ be LTL formulae.

1. Global (or, semantical) equivalence:

ϕ ≡g ψ if ∀π ∈ Σω. ∀i ∈ N0.
(
π, i |= ϕ ⇐⇒ π, i |= ψ

)
2. Initial equivalence:

ϕ ≡i ψ if ∀π ∈ Σω.
(
π, 0 |= ϕ ⇐⇒ π, 0 |= ψ

)
�

Global equivalence implies initial equivalence; the converse does not hold:
formulae a and �a are initially equivalent, but they are not globally equivalent.

It is easy to show that the two equivalence relations coincide for FLTL.
For every LTL formula ϕ there exists an FLTL formula ψ that is initially equiv-

alent to ϕ; see [10, 11]. That is, ϕ and ψ define the same property, although the
FLTL formula ψ is independent of the past.

In other words, past temporal connectives do not increase the expressiveness
of FLTL, in the sense that LTL and FLTL define the same set of properties.

There are however several advantages to adding past temporal connectives to
FLTL: specifications using both past and future temporal connectives are often
more natural (e.g. see [8, 15]), and LTL formulae can be exponentially more suc-
cinct than their equivalent ones in FLTL [16].

2.1.2 LTL Separation

The separation theorem by Gabbay [10] states that every LTL formula is glob-
ally equivalent, through a sequence of re-writes, to a Boolean combination of
pure past, pure present, and pure future formulae. Our present (respectively strict
future) formulae coincide with Gabbay’s pure present (respectively pure future)
formulae. Our past formulae correspond to Boolean combinations of Gabbay’s
pure past and pure present formulae. Applying the distributive laws for conjunc-
tion and disjunction, we rephrase Gabbay’s theorem in terms of a conjunction of
implications.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 12/49

Theorem 6 (Gabbay’s LTL Separation). Each formula ϕ of LTL is globally equiv-
alent, through a sequence of re-writes, to a formula of the form

(P1 → F1) ∧ · · · ∧ (Pn → Fn),

where Pi are past formulae and Fi are strict future formulae. �

We refer to this formula as a separated form or a separation of ϕ. We use the
notation (P→ F)n to denote a separation consisting of n conjuncts. Each conjunct
is an implication of the form Pi → Fi, and we will refer to the formulae Pi and Fi

as the past part and the future part of the conjunct, respectively.

Example 7. Consider the simple precedence property ϕ = �(a → _b). This
property may for instance specify that a person is granted access (denoted by a)
to a resource only if they have been previously authorized to do so (denoted by b).
The formula ϕ can be separated as:

�(a→ _b) ≡g

(
�¬b→ #¬

(
¬bU (a ∧ ¬b)

))
∧

(
a ∧ �¬b→ ⊥

)
Intuitively, the first conjunct of the separated form states that if the person was not
authorized yet, then in the (strict) future it must not happen that they are granted
access before they are authorized. This indicates that the property is not falsified
in the strict future. The second conjunct states that unauthorized access is not
granted in the present. 4

On the non-Uniqueness of Separation

For an LTL formula ϕ there is no syntactically unique separation. As a trivial ex-
ample, we can always add a conjunct > → >. However, since all separations of a
formula are semantically equivalent, whenever some past parts of two separations
(P → F)n and (P′ → F′)m of the same formula are mutually satisfiable, their
corresponding future parts must be semantically equivalent. More precisely,

Lemma 8. Let u ∈ Σ+ be an arbitrary trace. If the sets of indices I = {i | u |= Pi}

and J = { j | u |= P′j} are not empty, then
∧

i∈I Fi ≡g
∧

j∈J F′j.

Proof. Assume the contrary. Then, without loss of generality, there exists a path
xπ ∈ Σω such that xπ, 0 |=

∧
i∈I Fi and xπ, 0 6|=

∧
j∈J F′j. Therefore, for all indices

i ∈ {1, · · · , n} either uπ, |u−1| 6|= Pi or uπ, |u−1| |= Pi∧Fi. Thus uπ, |u−1| |= (P→
F)n and uπ, |u − 1| |= ϕ. Since xπ, 0 6|=

∧
j∈J F′j, there is an index j ∈ J such that

xπ, 0 6|= F′j. Therefore, uπ, |u− 1| 6|= P′j → F′j, and uπ, |u− 1| 6|= (P′ → F′)m, which
is a contradiction since a formula is semantically equivalent to its separation. �

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 13/49

This lemma is our first motivation for the construction of the canonical sepa-
rated form which we define later in the paper. We will refer to this lemma again
later, to prove that the canonical separation has unique structure.

2.1.3 Safety and Liveness

We now recall the notions of safety and liveness which were first introduced by
Lamport [13]. Safety and liveness properties are interesting both from a theo-
retical and a practical point of view, for example in testing. In this section, we
prove necessary and sufficient conditions for a language to allow decomposition
into safety an liveness. Later in the paper we prove, using LTL separation, that
LTL satisfies these conditions and therefore allows decomposition into safety and
liveness.

Lamport defines a safety property as one that states that something (usually
bad) will not happen. For example, the elevator door must not open while the
elevator is between floors. A liveness property is defined as one that states that
something (usually good) must eventually happen. For example, every process
in a multitasking system will eventually be granted CPU time. There are several
formalizations of safety and liveness, such as [2], but Alpern and Schneider’s for-
malization [3] has become the widely accepted standard. They use a topological
characterization of safety and liveness, attributed to Plotkin, to show that every
property is an intersection of a safety and a liveness property.

Definition 9. Let Σ be an alphabet and Σω the set of all paths over Σ. A property
is any set of paths.

• A set S of paths π ∈ Σω is a safety property iff for every π ∈ Σω

π < S =⇒ ∃i ∈ N0. ∀σ ∈ Σω. πiσ < S .

Intuitively, this states that for every path which is not in S , there exists a
point in time at which it becomes irremediable. This is the “bad” thing
from Lamport’s formulation of safety.

• A set L of paths π ∈ Σω is a liveness property iff

∀t ∈ Σ∗. ∃π ∈ Σω. tπ ∈ L.

Intuitively, no matter what has already happened, it can be remedied in the
future. It is only important that the “good” thing occurs.

�

These definitions are naturally extended to LTL: for an LTL formula ϕ, if L(ϕ)
is a safety (respectively liveness) property, we say that ϕ is safety (respectively
liveness).

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 14/49

The Topology of Properties

Definition 10. We define the topology of properties on Σω as follows:

• For every trace t ∈ Σ∗, the set {tπ | π ∈ Σω} is an open set.

• The union of open sets is an open set.

• The intersection of finitely many open sets is an open set.

Closed sets are complements of open sets. A set is dense iff its intersection with
any open set is non-empty. For a set A, we define its topological closure cl(A)
as the smallest closed set that contains A, i.e. the intersection of all closed sets
containing A. �

The topology of properties is interesting because safety properties correspond
to closed sets and liveness properties correspond to dense sets. Therefore, the
topological closure of a property P is the smallest safety property S such that
P ⊆ S .

Theorem 11 (Safety-Liveness Decomposition [3]). Let P ⊆ Σω be an arbitrary
set of paths. There exists a safety property S and a liveness property L such that
P = S ∩ L. �

The decomposition theorem is straightforward to prove using the topology of
properties: for any property P we take its topological closure to be S and for L we
take (Σω\S) ∪ P.

Alpern and Schneider have shown in [4] that the topological closure of any ω-
regular property (i.e. ω-regular language) is an ω-regular property and that there
is a corresponding ω-regular liveness property. We remark that the result of [4]
does not imply that every LTL formula is equivalent to a conjunction of a safety
LTL formula and a liveness LTL formula. This is because LTL is strictly less
expressive than ω-regular properties[25].

2.1.4 A right invariance equivalence relation on Σω

Before we define the canonical separation, which we use to characterize safety,
liveness, and other properties in LTL and show that LTL is closed under topologi-
cal closure, we will discuss safety and liveness with respect to arbitrary properties
in Σω, not necessarily limited to LTL. For an arbitrary property L, we define an
equivalence relation ≈L on the set of all finite traces. We then show how this re-
lation can be used to characterize the topological closure of L and to recognize if
L is a liveness property. In Section 2.1.6, we prove that the canonical separation
of anchored ϕ can be used to define the equivalence classes of ≈L(ϕ), which allows
us to apply the following results to LTL.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 15/49

Definition 12. We say that an equivalence relation on a set of traces Σ+ is right
invariant (with respect to concatenation) [17] when for all traces u, v, z ∈ Σ+, the
equivalence of u and v implies equivalence of uz and vz. �

Definition 13. Let L be a property. We define the equivalence relation ≈L by

u ≈L v if and only if ∀π ∈ Σω. uπ ∈ L ⇐⇒ vπ ∈ L.

�

It is immediate that ≈L is right invariant, for any L. Now let v ∈ Σ+ be
an irremediable trace with respect to the property L, i.e. for every π ∈ Σω let
vπ < L. Then the set of all such traces is the equivalence class [v]≈L . We use
the notation L⊥ to denote this set (which might be empty). We show that the
topological closure of L and the condition for L to be a liveness property can be
characterized using L⊥.

Lemma 14. Let L be a property. Then, cl(L) = {π ∈ Σω | ∀i ∈ N0. πi < L⊥}.

Proof. We show that S = {π ∈ Σω | ∀i ∈ N0. πi < L⊥} contains L, that it is a safety
property, and that it is a subset of every safety property containing L. For a path
π < S there exists an i ∈ N0 such that πi ∈ L⊥. Then πiσ < S , for all paths σ. This
proves that S is a safety property. Since πi ∈ L⊥, in particular π < L. Therefore,
L ⊆ S . Finally, assume there is a safety property S ′ containing L such that there
is a path π ∈ S that is not in S ′. Since S ′ is a safety property, there exists an i ∈ N0

such that πiσ < S ′, and therefore also πiσ < L, for all σ ∈ Σω. It follows that
πi ∈ L⊥, but from the definition of S , πi < L⊥, which is a contradiction. �

Corollary 15. Let F be a set of properties. F is topologically closed if and only
if

∀L ∈ F .
{
π ∈ Σω | ∀i ∈ N0. πi < L⊥

}
∈ F .

�

The following lemma that characterizes liveness properties follows immedi-
ately from the definition of liveness.

Lemma 16. A property L is a liveness property if and only if L⊥ = ∅. �

2.1.5 Canonical Separation

In this section, we define the notion of a canonical separation and establish a
connection with the equivalence classes of ≈L(ϕ). This will allow us to apply the
results of Section 2.1.4 to characterize liveness and safety in LTL, prove that the

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 16/49

“safety part” of an LTL formula is an LTL formula, and constructively prove the
decomposition theorem for LTL.

For a given LTL formula ϕ, we will construct a new formula ψ = (P1 →

F1) ∧ · · · ∧ (Pn → Fn), in separated form, such that:

(i) For every trace t ∈ Σ+ there is a unique index i such that t |= Pi.

(ii) For every path π ∈ Σω, and every i ∈ N0, if π, i |= ψ then π, 0 |= ϕ.

(iii) For every path π ∈ Σω, if π, 0 |= ϕ then π, i |= ψ, for all i ∈ N0.

(iv) For all indices i , j, Fi .g F j.

The intuition behind this construction is as follows. The first condition guarantees
that ψ defines a partition on the set of finite traces. From the second condition, it
follows that whenever t |= Pi, if a path π satisfies the corresponding future part Fi,
the path tπ satisfies ϕ initially. The third condition ensures that whenever t |= Pi,
if π falsifies the corresponding future part Fi, the path tπ falsifies ϕ initially. From
these three conditions it follows that every set in the partition induced by ψ is
contained in one of the equivalence classes of the relation ≈L(ϕ). Finally, the last
condition ensures that these sets coincide with the equivalence classes.

We first observe that, in general, a separation of ϕ satisfies none of these con-
ditions. We prove that the formula �_ϕ, which we refer to as anchored ϕ satisfies
(ii) and (iii). Thus, every separation of anchored ϕ also satisfies (ii) and (iii). We
introduce the notion of a canonical separation, which is a separation that can
be constructed from any separation, and satisfies (i) and (iv). Hence, a canonical
separation of anchored ϕ satisfies (i)-(iv) and therefore partitions the set of finite
traces into equivalence classes of ≈L(ϕ).

Example 17. In this example, we show that a separation of our precedence prop-
erty ϕ = �(a→ _b) does not satisfy (i) and (ii). Its separation is given by

(a ∧ �¬b→ ⊥) ∧ (�¬b→ #¬(¬bU (a ∧ ¬b))).

It is immediate that this formula does not satisfy (i). Let t be a trace of length |t|.
A path tπ satisfies the separation at time |t| − 1 iff t |= Pi implies xπ, 0 |= Fi, for
i = 1, 2. For example, we can append any path π to the trace t = bbb to satisfy
the separation, and thus also ϕ, at time 2. This, however, does not imply that
tπ, 0 |= ϕ. We can append any path π to the trace t = abb to satisfy the separation
at time 2, but ϕ is falsified at time 0, i.e. abbπ, 0 6|= ϕ. As all separations of
a formula ϕ are globally equivalent, it follows that no separation of ϕ satisfies
(ii). 4

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 17/49

Note that the conditions (ii) and (iii) can be expressed as the equivalence π, 0 |=
ϕ iff ∃i. π, i |= ψ iff ∀i. π, i |= ψ. Therefore, every separation of such a formula
ψ will satisfy (ii) and (iii) as well. Intuitively, this would allow us to reason,
at time |t| (i.e. the present time), about how a trace t can be extended to either
satisfy or falsify ϕ at time 0, i.e. initially. We will use a method similar to how
Fisher [9] defines his separated normal form. The idea is to “anchor” ϕ at time
0. By pretending �_ we obtain a formula that evaluates at any time i to what ϕ
evaluates at time 0.

Theorem 18. For every LTL formula ϕ and path π ∈ Σω, the following are equiv-
alent:

1. π, 0 |= ϕ

2. ∃i ∈ N0. π, i |= �_ϕ

3. ∀i ∈ N0. π, i |= �_ϕ

Proof. 2 follows trivially from 3. If 2 holds, then π, 0 |= _ϕ, and π, 0 |= ϕ. If 1
holds, then for every k ∈ N0, π, k |= _ϕ. Therefore, for every i ∈ N0 and every
j ≤ i it follows that π, j |= _ϕ. Then, by the definition of �, for every i ∈ N0 it
follows that π, i |= �_ϕ. �

The implication 2 → 1 proves that anchored ϕ satisfies the condition (ii) and
the implication 1 → 3 proves that it satisfies the condition (iii). As discussed
before, this proves that π, 0 |= ϕ and π, i |= �_ϕ are equivalent, for every i ∈ N0

and all paths π.

Example 19. Returning to the formula ϕ = �(a→ _b), we now separate �_ϕ:

�_ϕ ≡g

(
_
(
a ∧ �¬b

)
→ ⊥

)
∧

(
�¬b→ #¬

(
¬bU (a ∧ ¬b)

))
Recall Example 7. The second conjunct of both separations coincides, but the first
one is different: intuitively, in the formula above, we also “look back” to check
that the property was not falsified in the past, while in the former example we only
checked if it was falsified in the present or the future. We can use this formula to
reason about satisfying continuations of traces, and to define the relation ≈L(ϕ), by
defining its equivalence classes. We can see that ≈L(ϕ) will have three equivalence
classes:

1. C1 = L(ϕ)⊥ = {t ∈ Σ+ | t |= _(a ∧ �¬b)} is the set of all irremediable traces.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 18/49

2. C2 = {t ∈ Σ+ | t |= �(¬b ∧ ¬a)} is the set of traces that can be extended to
satisfy ϕ by paths in which a does not occur for the first time before b does.

3. C3 = {t ∈ Σ+ | t |= _(b ∧ ¬ _a)} is the set of all traces such that every
continuation results in a path satisfying ϕ.

It may be surprising that the past formulae defining the three classes do not corre-
spond to the past formulae in the separation. This is because the separation does
not satisfy condition (i) and the two past formulae in the separation are mutually
satisfiable. For example, the trace a satisfies both of them, it can be extended
in such a way that the future formula of the second conjunct is satisfied, but the
resulting path will not satisfy ϕ, since we cannot satisfy ⊥ in the first conjunct.
This motivates the definition of a (structurally) canonical separation. Intuitively,
a canonical separation is a separation that satisfies conditions (i) and (iv), and
therefore induces an equivalence relation on the set of finite traces Σ+. 4

To construct the canonical separation of a formula ψ, we take any separation
of ψ and apply the procedure explained below. This results in a new formula,
denoted (P

c
→ F)n, which we call a canonical separation of ψ. This formula is

also separation of ψ, and in the case of ψ = �_ϕ, it satisfies conditions (i) and (iv)
for the formula ϕ.

Definition 20. Let (P → F)n be a separation of an LTL formula ψ. Consider the
formula ∧

I⊆{1,...,n}

(((∧
i∈I

Pi

)
∧

(∧
j∈{1,...,n}\I

¬P j

))
→

∧
i∈I

Fi

)
.

From this formula, eliminate all conjuncts with past parts that are globally un-
satisfiable, i.e. such that ^P ≡i ⊥, and combine all conjuncts with semantically
equivalent future parts. We call the resulting formula, denoted (P

c
→ F)n a canon-

ical separation of ψ. �

It is immediate that a canonical separation of ψ is a separation of ψ, that every
trace t ∈ Σ+ satisfies the past part of exactly one of its conjuncts, and that no
two of its conjuncts have semantically equivalent future parts. Therefore, it is a
separation of ψ and satisfies conditions (i) and (iv). To simplify further discussion,
if the canonical separation contains no conjunct with an unsatisfiable future part,
we add the conjunct⊥ → ⊥. Note that in the remainder of the paper, for a formula
ϕ we wish to reason about, we are generally interested in a canonical separation
of anchored ϕ.

Theorem 21. Let let (P
c
→ F)n, and (P′

c
→ F′)m be two canonical separations of

anchored formula ϕ. Then, they have the same structure, namely:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 19/49

• n = m, i.e. they have the same number of conjuncts.

• For every index i there is an index j such that Pi ≡g P′j and Fi ≡g F′j.

Proof. Choose a conjunct P → F other than ⊥ → ⊥ from one of the canonical
separations. Since P is satisfiable, there is a trace u ∈ Σ+ such that u |= P. By
the condition (i), u does not satisfy the past part of any other conjunct in the first
canonical separation, and there is exactly one conjunct P′ → F′ in the second
canonical separation such that u |= P′. Since both formulae are separations of the
same initial formula, it follows from (8) that F ≡g F′.

Now assume one of the canonical separations does not have the conjunct ⊥ →
⊥. Then it must have a conjunct P → F such that P is satisfiable and F ≡g ⊥.
From the proof so far, it follows that the other canonical separation has such a
conjunct. Therefore, by the construction of the canonical separation, none of the
formulae have the conjunct ⊥ → ⊥. �

Example 22. Let us return to our running example ϕ = �(a → _b). We take
the separation from Example 19, and use it to construct a canonical separation of
anchored ϕ:

(
_
(
a ∧ �¬b

)
→ ⊥

)
∧(

�
(
¬b ∧ (¬a ∨ _b)

)
→ #¬

(
¬bU (a ∧ ¬b)

))
∧((

_b ∧ �(¬a ∨ _b)
)
→ >

)
We can observe that the number of conjuncts corresponds to the number of

equivalence classes of the relation ≈L(ϕ), where L(ϕ) is the property specified by
ϕ, i.e. the set of all paths satisfying ϕ at the initial time. Each class is defined
as the set of all traces that satisfy the past formula of the same conjunct. Note
that the past part of the second conjunct differs from the formula in the definition
of class C2 in Example 19. This is not a problem because the two formulae are
semantically equivalent. Since L(ϕ)⊥ , ∅, we can conclude that the property
specified by ϕ is not a liveness property. 4

To simplify further discussion, for a canonical separation (P
c
→ F)n we use a

distinguished index ⊥ to refer to the conjunct such that F⊥ ≡g ⊥. For a formula
ϕ, and any canonical separation of anchored ϕ, we define the sets

Ci =
{
t ∈ Σ+ | t |= Pi

}
.

Theorem 21 ensures these sets are independent of the particular choice of canon-
ical separation (allowing for permutation of indices). For an index i and a trace

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 20/49

t ∈ Ci, the path tπ satisfies formula ϕ initially iff xπ, 0 |= Fi. Thus, if t′ ∈ Ci,
it follows that t ≈L(ϕ) t′. Since in the construction of a canonical separation we
do not allow two conjuncts with semantically equivalent future parts, we have the
following theorem:

Theorem 23. Let ϕ be an LTL formula and let L(ϕ) be the property specified
by ϕ. The equivalence classes of ≈L(ϕ) are given by the sets Ci. Furthermore,
L(ϕ)⊥ = C⊥. �

Applications of the Canonical Separation

Theorem 23 allows us to apply the results from Section 2.1.4 to LTL and canonical
separation. We prove that LTL is closed under topological closure and show how
to construct the closure of a formula using canonical separation. This allows us to
prove LTL formulae can be decomposed into safety and liveness in LTL. We show
that deciding if an LTL formula ϕ is liveness is equivalent to the unsatisfiability of
^P⊥ and that deciding if a formula ϕ is safety is equivalent to the unsatisfiability
of ¬ϕ ∧ �¬P⊥. Finally, we recall the notions of stable, absolute liveness, and
fairness properties, and use canonical separation of anchored ϕ to characterize
them.

2.1.6 Closure and Decomposition

Theorem 24. The topological closure of a property L(ϕ) specified by an LTL
formula ϕ is the property L(�¬P⊥) specified by the LTL formula cl(ϕ) := �¬P⊥.

Proof. By Lemma 14, we must prove that {π ∈ Σω | π, 0 |= �¬P⊥} is equal to
{π ∈ Σω | ∀i ∈ N0. πi < L(ϕ)⊥}. This is straightforward: π, 0 |= �¬P⊥ iff ∀i ∈
N0. π, i |= ¬P⊥ iff ∀i ∈ N0. π, i 6|= P⊥ iff ∀i ∈ N0. πi 6|= P⊥ iff ∀i ∈ N0. πi < C⊥ iff
∀i ∈ N0. πi < L(ϕ)⊥. �

For the formula cl(ϕ), we say it is the safety part, or closure, of formula ϕ.
Since this construction can be done for every LTL formula, it follows that the set
of LTL properties satisfies (15), which proves LTL is closed under topological
closure.

Corollary 25. LTL is closed under topological closure. �

Now that we have shown that LTL is closed under topological closure, it is
simple to show that LTL formulae can be decomposed. We construct the liveness
part following Alpern and Schneider in [3].

Lemma 26. Let ϕ be an LTL formula. Then the formula live(ϕ) = ϕ ∨ ¬cl(ϕ) is
liveness.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 21/49

Proof. Assume the contrary. Then there is a trace t such that for every path π the
formula live(ϕ) is not satisfied by tπ at time 0. Therefore, for every path π also
tπ, 0 6|= ϕ and tπ, 0 |= cl(ϕ). The latter implies t < C⊥. Hence, there is a path σ
such that tσ, 0 |= ϕ, which is a contradiction. �

We can finally prove the decomposition theorem for LTL. This is now com-
pletely straightforward, since by applying distributive laws cl(ϕ)∧live(ϕ) = cl(ϕ)∧
(ϕ ∨ ¬cl(ϕ)) ≡g ϕ. This is an application of Corollary 1.1 from [3].

Corollary 27 (The decomposition theorem for LTL). Every formula ϕ of LTL is
semantically equivalent to the conjunction of LTL formulae cl(ϕ)∧ live(ϕ), where
cl(ϕ) is a safety LTL formula and live(ϕ) is a liveness LTL formula. �

To complete the picture in a sense, we also mention that every LTL formula
can be expressed as a conjunction of two liveness LTL formulae. More precisely,

Corollary 28. Every formula ϕ of LTL is semantically equivalent to the conjunc-
tion of two liveness LTL formulae.

Proof. As a result of Corollary 2.1. from [3], we only have to show that there exist
two liveness LTL formulae ϕ and ψ such that ϕ ∧ ψ ≡i ⊥. We can take ϕ = �^a
and ψ = ¬ϕ ≡g ^�¬a. It is easy to show both formulae are liveness, and their
conjunction is not satisfiable. �

2.1.7 Characterizing Liveness and Safety

Let ϕ be an LTL formula and let (P
c
→ F)n be a canonical separation of anchored

ϕ. As before, let P⊥ be the past part of the conjunct P⊥ → F⊥ such that F⊥ ≡g ⊥.
Note that, since Fi are future formulae, this is equivalent to F⊥ ≡i ⊥, i.e. that F⊥
is not satisfiable.

Theorem 29 (Characterization of Liveness). A formula ϕ is liveness iff the for-
mula ^P⊥ is not satisfiable, i.e. ^P⊥ ≡i ⊥.

Proof. From (16), and the connection between C⊥ and the definition of P⊥, it
follows that ϕ is liveness iff every trace t ∈ Σ+ falsifies P⊥, i.e. t 6|= P⊥. This
is equivalent to the condition that, for every path π ∈ Σω and every i ∈ N0 also
π, i 6|= P⊥, which is equivalent to π, i |= ¬P⊥. Thus, ϕ is liveness iff for every
path π, we have π, 0 |= �¬P⊥. This is equivalent to π, 0 |= ¬^P⊥ and finally
π, 0 6|= ^P⊥, for all paths π ∈ Σω. This is equivalent to ^P⊥ ≡i ⊥. �

Note that all conjuncts with such a past part are actually removed during the
construction of the canonical separation. It follows that (P

c
→ F)n must have the

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 22/49

conjunct ⊥ → ⊥ and therefore P⊥ = ⊥. This also establishes, for LTL, a well-
known result from [3] that a property is liveness iff its topological closure is the
set of all paths, since cl(ϕ) = �¬P⊥ = �¬⊥ ≡g �> ≡i >.

Corollary 30. A formula ϕ is liveness if and only if cl(ϕ) ≡i >. �

A formula ϕ is safety if and only if the property L(ϕ) is equal to L(�¬P⊥). In
other words, ϕ is safety iff ϕ ≡i cl(ϕ). From (24) it follows that L(ϕ) ⊆ L(�¬P⊥),
therefore, it is enough to show that there is no path π ∈ Σω such that π, 0 |= �¬P⊥
and π, 0 6|= ϕ. This gives us the following characterization of safety.

Theorem 31 (Characterization of Safety). A formula ϕ is safety iff the formula
¬ϕ ∧ �¬P⊥ is not satisfiable, i.e. ¬ϕ ∧ �¬P⊥ ≡i ⊥. �

To illustrate these results, we will once again refer to our running example.

Example 32. Let us take another look at our running example ϕ = �(a → _b).
In (22), we gave a canonical separation of anchored ϕ. It is immediate that P⊥ =

_(a ∧ �¬b).
Observe the formula ^_(a∧�¬b). This formula is satisfiable, for example by

the path aω. Therefore, ϕ is not liveness.
We can explicitly construct the safety part of ϕ:

cl(ϕ) = �¬_(a ∧ �¬b)

This formula is semantically equivalent to ��(a→ _b), and initially equivalent to
�(a→ _b). Therefore, the formula ¬ϕ ∧ ¬cl(ϕ) is initially equivalent to ¬�(a→
_b)∧�(a→ _b). This formula is not satisfiable, and therefore initially equivalent
to ⊥, which proves that ϕ is safety. 4

2.1.8 Characterizing Stability, Absolute Liveness, and Fairness

The notion of fairness was formalized by Sistla [22]. He defines a fairness prop-
erty as a property that is both stable and absolute liveness. Informally, a fairness
property can neither be satisfied nor falsified in finite time.

Definition 33. Let ϕ be an LTL formula.

1. ϕ is stable if for every path π, initial satisfaction π, 0 |= ϕ implies πi, 0 |= ϕ,
for all i ∈ N0.

2. ϕ is absolute liveness if ϕ is satisfiable, and for all traces t and every path
π such that π, 0 |= ϕ, also tπ, 0 |= ϕ.

3. ϕ is fairness if it is both stable and absolute liveness.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 23/49

�

Note that we adapted Sistla’s formalization of stable properties to LTL with
past connectives. In [22], ϕ is stable if π, 0 |= ϕ implies π, i |= ϕ, for every i.
However, this definition assumes ϕ is a formula of FLTL. The definitions coincide
when ϕ is a future formula, but otherwise they do not: consider the formula �_a.
This formula is not stable with our definition, but would be if we used Sistla’s
with our syntax. Our modification formalizes the notion of a stable property as a
property containing all suffixes of its elements in LTL.

Let ϕ be an LTL formula and let (P
c
→ F)n be a canonical separation of an-

chored ϕ. We first show necessary and sufficient conditions for ϕ to be stable and
absolute liveness, respectively. We combine the two in a characterization of fair-
ness and conclude the section with an example. In the following characterizations,
we will use the fact that every LTL formula is initially equivalent to a formula of
FLTL [10, 11]. For a formula ϕ, we will denote such an equivalent formula by ϕF .

Lemma 34. A formula ϕ is stable iff the formula Ψ =
∨n

i, j=1^(Pi∧PF
j ∧Fi∧¬F j)

is not satisfiable.

Proof. Let ϕ be stable and assume the contrary, i.e. there is a path π ∈ Σω such
that π, 0 |= Ψ. Then there exists a k ≥ 0 and indices i, j such that π, k |= Pi,
π, k |= PF

j , π, k |= Fi, and π, k |= ¬F j. Since π, k |= Pi and π, k |= Fi, it follows
that π, 0 |= ϕ. From π, k |= PF

j , it follows that πk, 0 |= P j. Since π, k |= ¬F j, also
πk, 0 |= ¬F j, and πk, 0 6|= ϕ. This is a contradiction with the assumption that ϕ is
stable.

To prove the converse, let Ψ not be satisfiable, and assume ϕ is not stable.
Then, there exists a path π such that π, 0 |= ϕ and a k > 0 such that πk, 0 6|= ϕ.
Let i and j be indices such that πk |= Pi and pk |= P j. It follows that πk, 0 |= Fi

and πk, 0 6|= F j. Therefore, π, k |= Pi ∧ PF
j ∧ Fi ∧ ¬F j, and π, 0 |= Ψ, which is a

contradiction.
�

Example 35. Let ϕ = �a. The formula �_�a is semantically equivalent to ��a.
From this, it is easy to see (_¬a→ ⊥)∧ (> → #�a) is a separation of anchored
ϕ. Therefore, a canonical separation of anchored ϕ is given by

(_¬a→ ⊥) ∧ (�a→ #�a).

To prove ϕ is a stable formula, we need to show that the formulae ^(_¬a ∧
a∧⊥∧¬#�a) and ^(�a∧¬a∧#�a∧>) are not satisfiable. This is immediate
because of the ⊥ in the first formula and �a∧¬a in the second formula. Therefore
�a is a stable formula. 4

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 24/49

Lemma 36. Formula ϕ is absolute liveness iff ϕ is satisfiable and the formula
Φ =

∨n
i, j=1^(Pi ∧ PF

j ∧ ¬Fi ∧ F j) is not satisfiable.

Proof. Let ϕ be absolute liveness. By the definition of absolute liveness, ϕ is
satisfiable. Assume there is a path π ∈ Σω such that π, 0 |= Φ. Then there exists
a k ≥ 0 and indices i, j such that π, k |= Pi, π, k |= PF

j , π, k |= ¬Fi, and π, k |= F j.
Analogously to the proof of the previous lemma, πk, 0 |= ϕ and π, 0 6|= ϕ. This is a
contradiction with the assumption that ϕ is absolute liveness.

To prove the converse, let Φ not be satisfiable, and assume ϕ is satisfiable but
not absolute liveness. Then there exists a path π and a k > 0 such that πk, 0 |= ϕ
and π, 0 6|= ϕ. Let i and j be indices such that πk |= Pi and pk |= P j. It follows that
πk, 0 6|= Fi and πk, 0 |= F j. Therefore, π, k |= Pi ∧ PF

j ∧ ¬Fi ∧ F j, and π, 0 |= Φ,
which is a contradiction. �

Example 37. Let ϕ = ^a. The formula �¬a → ^a is a separation of anchored
ϕ. Therefore, a canonical separation of anchored ϕ is given by

(⊥ → ⊥) ∧ (_a→ >) ∧ (�¬a→ #^a).

It is immediate that ϕ is a liveness formula, and therefore satisfiable. To prove
it is absolute liveness, we need to show that Φ is not satisfiable. Since P⊥ = ⊥,
we only need to consider indices i, j , ⊥. The two formulae we still need to
consider are ^(_a ∧ ¬a ∧ ⊥ ∧ #^a) and ^(�¬a ∧ a ∧ ¬^a ∧ >. The first
formula is not satisfiable because of the conjunct ⊥, and the second formula is
not satisfiable because of the conjunction �¬a ∧ a. Therefore, ^a is an absolute
liveness formula. 4

Theorem 38 (Characterization of fairness). A formula ϕ is fairness iff ϕ is satisfi-
able and there is an index i such that ^¬Pi ≡i ⊥.

Proof. Let ϕ be fairness. In particular, ϕ is liveness, satisfiable, and ^P⊥ ≡i ⊥.
Assume the contrary, i.e that for all indices i, j , ⊥ there are traces u, v ∈ Σ+

such that u |= Pi and v |= P j. By the construction of canonical separation, Fi is
satisfiable, and let xπ be a path such that xπ, 0 |= Fi. Then uπ, 0 |= ϕ. Since ϕ is
stable, it follows that π, 0 |= ϕ. Since it is absolute liveness, vπ, 0 |= ϕ. Therefore
xπ, 0 |= F j. By repeating this proof with the indices exchanged, we get that Fi and
F j are semantically equivalent. This is a contradiction, since it is not possible by
the construction of the canonical separation.

For the converse, the canonical separation satisfies the conditions of the previ-
ous lemmas and therefore ϕ is both stable and absolute liveness. �

Example 39. Consider the property ϕ = �^a. The formula �_�^a is semanti-
cally equivalent to ��^a, which is semantically equivalent to �^a. It is easy to

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 25/49

Property Characterization (UNSAT)
Safety ¬ϕ ∧ �¬P⊥
Liveness ^P⊥
• Absolute Liveness

∨n
i, j=1^(Pi ∧ PF

j ∧ ¬Fi ∧ F j)
Stable

∨n
i, j=1^(Pi ∧ PF

j ∧ Fi ∧ ¬F j)
Fairness ^¬Pi, for some i

Figure 1: Reduction to UNSAT

see that > → #�^a is one of its separations. Therefore, a canonical separation
of anchored ϕ is given by

(⊥ → ⊥) ∧ (> → #�^a).

This proves that ϕ is a fairness property. 4

Theorem 40. Recognizing safety, liveness, absolute liveness, safety, and fairness
can be reduced to the non-satisfaction problem for LTL, summarized in Fig. (1).

�

A formula ϕ of LTL is safety, liveness, absolute liveness, safety, or fairness iff
the respective formula in Fig. (1) is not satisfiable. Note that the characterization
of absolute liveness assumes ϕ is liveness. This is justified since every absolute
liveness formula is a liveness formula, and every liveness formula is satisfiable,
and therefore satisfies the conditions of (36).

2.2 SATMC abstract attack trace generation
In this section we present the SATMC technique for model checking LTL prop-
erties. The complete description has been previously presented in [24]. Here we
recall some excerpts of the technique, playing a key role for the generation of the
attack trace in the test case generation.

2.2.1 SAT-reduction technique for First Order Linear Temporal Logic

Intuitively, the SATMC approach consists in reducing the problem of determin-
ing whether a security protocol violates a security property in k > 0 steps to the
problem of checking the satisfiability of a propositional formula (the SAT prob-
lem). SAT encodings can be processed by means of efficient SAT solvers. By
supporting the specification of security properties as (first-order) Linear Temporal
Logic (LTL) formulae, SATMC is used for obtaining counterexample traces in the
test case generation techniques described in Section 2.1.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 26/49

At the core of our technique lies the construction of a data structure called
planning graph. A planning graph provides a succinct representation of an over-
approximation of the states that are reachable in k steps. In [5] the planning graph
has been shown to generate concise encodings representing the set of execution
paths. Such conciseness is crucial for the efficiency of our method. Below, we
show how the planning graph is used for reducing any first-order LTL formula φ
to an equivalent (in a sense that will be defined later) propositional formula φ0

which is then reduced to SAT using available techniques (see, e.g., [6]).
The language of LTL we consider uses facts and equalities as atomic proposi-

tions, the usual propositional connectives (¬, ∨, ∧,⇒), the first-order quantifiers
∀ and ∃, and the temporal operators defined below. We denote with AP the set
of atomic propositions. Let V be the set of variables used in the language and
let T be the set of all ground terms that can be built by using the individual con-
stants and the function symbols occurring in the specification of the system. An
Herbrand interpretation is an interpretation IH = (DH, gh), where DH = T and
gH(f)(t1, . . . , tn) = f (gh(t1), . . . , gh(tn)), i.e. gh(t) = t for all t ∈ T . An Herbrand
interpretation admits representation by means of the set of atomic formulae that
are true in it. Thus, if p is an atomic formula we write p ∈ IH in place of IH |= p.
An assignment over V is a total function from V into T , i.e. α : V → T . The
extension of assignments to the set of facts is straightforward.

A Kripke structure is a tuple M = (S , I,R, L), where S is the set of states,
I ⊆ S is the set of initial states, R ⊆ (S × S) is a total transition relation, i.e. for
each s ∈ S there exists s′ ∈ S such that (s, s′) ∈ R, and L : S → 2AP is a labeling
function, i.e. a function that maps every state in an Herbrand interpretation. A
path is an infinite sequence of states π = s0s1s2 · · · such that (si, si+1) ∈ R for all
i = 0, 1, If π = s0s1s2 · · · is a path, with π(i) we denote si and with πi with
denote the suffix si, si+1, . . . of π. We say that π is an initialized path iff π0 ∈ I. Let
π be an initialized path of M and α be an assignment over V, an LTL formula φ
is satisfied by α in π, written π |=α φ, if and only if π0 |=α φ, where πi |=α φ, with
i ≥ 0, is inductively defined as follows:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 27/49

πi |=α f if α(f) ∈ L(π(i)) (f is a fact)
πi |=α (t1 = t2) if α(t1) and α(t2) are the same term
πi |=α ¬φ if πi 6|=α φ
πi |=α (φ1 ∨ φ2) if πi |=α φ1 or πi |=α φ2

πi |=α X φ if πi+1 |=α φ
πi |=α φUψ if ∃ j ≥ i.π j |=α ψ and ∀k ∈ [i, j).πk |=α φ
πi |=α φRψ if ∀ j ≥ i.π j |=α ψ or ∃k ∈ [i, j).πk |=α φ
πi |=α Y φ if i > 0 and πi−1 |=α φ
πi |=α φSψ if ∃ j ∈ [0, i].πi |=α ψ and ∀k ∈ (j, i].πk |=α φ
πi |=α φTψ if ∀ j ∈ [0, i].πi |=α ψ or ∃k ∈ (j, i].πk |=α φ
πi |=α ∃x.φ if πi |=α[t/x] φ for some t ∈ T

where α[t/x] is the assignment that associates x with t and all other variables y
with α(y). Commonly LTL formulae exploit standards boolean shorthand > ≡
φ ∨ ¬φ , ⊥≡ ¬>, φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ), φ⇒ ψ ≡ ¬φ ∨ ψ, ∀x.φ ≡ ¬∃x.¬φ and the
derived temporal operators F φ ≡ >U φ (finally), G φ ≡ ¬F¬φ (globally), O φ ≡
>S φ (once), H ≡⊥ T φ (historically). We use ∀(φ) and ∃(φ) as abbreviations
of ∀X1. . . .∀Xn.φ and ∃X1. . . .∃Xn.φ respectively, where X1, . . . , Xn are the free
variables of the formula φ.

We say that φ is valid in M, in symbols M |= φ, if and only if π |=α φ for all
initialized paths π of M and all assignments α.

In rest of this section we show that planning graphs can be profitably used to
turn any first-order LTL formula φ into a propositional LTL formula φ0 such that
if π is an execution path of M with k or less states that violates φ0, then π violates
also φ, and vice versa.

A planning graph is a sequence of layers Γi for i = 0, . . . , k, where each layer
Γi is a set of facts concisely representing a set of states ‖Γi‖ = {S : S ⊆ Γi}. The
construction of a planning graph for a given model M goes beyond the scope of
this section and the interested reader is referred to [5] for more details. For the
purpose of this section it suffices to know that (i) Γ0 is set to the initial state of
M, (ii) if S is reachable from the initial state of M in i steps (i.e. i transitions in
M), then S ∈ ‖Γi‖ (or equivalently S ⊆ Γi) for i = 0, . . . , k, and (iii) Γi ⊆ Γi+1 for
i = 0, . . . , k − 1, i.e. the layers in the planning graph grow monotonically. From
these key properties it is easy to see that if a fact does not occur in Γk, then it is
false in all states reachable from the initial state in k steps and this readily leads to
the following fact.

Fact 1. Let φ be a propositional LTL formula, Γi for i = 0, . . . , k be a planning
graph for M, and p a fact such that p < Γk. Then, M |=k φ iff M |=k φ[⊥/p], where
φ[⊥/p] is the formula obtained from φ by replacing all occurrences of p with ⊥.

To illustrate let us consider the problem of generating a propositional version

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 28/49

of the following first-order formula:

∃A.F(¬O s(A, b) ∧ r(b, A)) (1)

when Γk = {s(a1, b), r(b, a1), r(b, a2)}.
If the variable A ranges over the (finite) set of constants DA = {a1, . . . , an},

then we can replace the existential quantifier with a disjunction of instances of the
formula in the scope of the quantifier, where each instance is obtained by replacing
the quantified variable, namely A, with the constants in DA:

F(¬O s(a1, b) ∧ r(b, a1)) ∨ . . . ∨ F(¬O s(an, b) ∧ r(b, an)) (2)

By repeatedly using Fact 1, formula (2) can be rewritten into:

F(¬O s(a1, b) ∧ r(b, a1)) ∨ F(¬O⊥ ∧ r(b, a2)) ∨ . . . ∨ F(¬O⊥ ∧ ⊥) (3)

and finally be simplified to

F(¬O s(a1, b) ∧ r(b, a1)) ∨ F(r(b, a2)) (4)

Even if the resulting formula is compact thanks to the simplification induced by
the planning graph, the instantiation step, namely the replacement of the existen-
tial quantifier with a disjunction of instances, can be a very expensive or even
unfeasible (if the domain of the existentially quantified variable is not bounded).

A better approach is to let the instantiation activity be driven by the informa-
tion available in the planning graph. This can be done by removing the existential
quantification and generating instances by recursively traversing the remaining
formula in a top down fashion. As soon as an atomic formula is met, the formula
is matched against the facts in Γk and if a matching fact is found then the for-
mula is replaced with the ground counterpart found in Γk and the corresponding
matching substitution is carried over. The approach is iterated on backtracking so
to generate all possible instances and when no (other) matching fact in Γk for the
atomic formula at hand, then we replace it with ⊥.

To illustrate, let us apply the approach to the formula (1). By removing the
existential quantification we get the formula:

F(¬O s(A, b) ∧ r(b, A)) (5)

By traversing (5) we find the atomic formula s(A, b) which matches with the fact
s(a1, b) in Γk with matching substitution A = a1. The atomic formula s(A, b) is
replaced with s(a1, b) in (5) and the constraint A = a1 is carried over. We are
then left with the problem of finding a matching fact for the formula obtained

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 29/49

by applying the substitution to the right conjunct r(b, A), namely r(b, a1). The
matching fact is easily found in Γk and we are therefore left with the formula

F(¬O s(a1, b) ∧ r(b, a1)) (6)

as our first instance. By iterating the approach on backtracking we find that there
is no other matching fact for r(b, a1) which is then replaced by ⊥ thereby leading
to the instance:

F(¬O s(a1, b) ∧ ⊥) (7)

By further backtracking we find that there no other matching fact for s(A, b) in Γk

and therefore we generate another instance by replacing s(A, b) with ⊥ and carry
over the constraint A , a1. The only fact in Γk matching r(b, A) while satisfying
the constraint A , a1 is r(b, a2). We are then left with the formula

F(¬O⊥ ∧ r(b, a2)) (8)

as our third instance. No further matching fact for r(b, a2) exists and we thus
obtain the formula

F(¬O⊥ ∧ ⊥) (9)

as our final instance. The procedure therefore turns the first-order LTL formula
(1) into the disjunction of (6), (7), (8), and (9), which can in turn be simplified to
(4).

3 Vulnerability-driven Test Case Generation
Below we present the advancements carried out in SPaCIoS for the vulnerability-
driven test case generation. Mainly, we discuss the prioritization of abstract at-
tack traces and how to obtain it through the extension of mutation operators and
SATMC.

3.1 AAT prioritization
We implemented a set of low(high) level AVANTSSAR Specification Language
(ASLan(++)) mutation operators to inject specific vulnerabilities into a secure
specification (i.e., a specification for which no attack trace can be found by the
model checkers). Each mutation operator is used to generate a set of modified
specifications, called mutants, that, due to the injected vulnerability, are likely to
lead to a violation of the defined security goals and therefore to an AAT. The set
of attack traces generated this way is then used as a test suite for assessing the se-
curity of the target web application or protocol, i.e., the System Under Test (SUT).

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 30/49

More precisely, since every mutation operator injects a specific vulnerability, ev-
ery time we succeed in reproducing one of the generated AATs on the implemen-
tation of the SUT, we know that the associated vulnerability is affecting the SUT’s
implementation. Given the different level of abstraction that characterizes an im-
plementation and its specification in ASLan(++), in order to be able to execute
an AAT on a real system we need to concretize it. This allows us to obtain the
sequence of concrete inputs and expected outputs to use for probing the imple-
mentation of the SUT.

All the phases introduced so far have been already presented and discussed in
details in previous deliverables ([23, 24]). In this document we focus exclusively
on the latest developments based on combining model mutation, risk analysis,
and model checking techniques to obtain a prioritized set of AATs. Having an
indication about which of the test cases has the highest probability to expose a
vulnerability in the SUT’s implementation is important because the concretization
and the execution of test cases is a resource consuming task.

3.2 Model mutation
The mutation strategy applied to obtain AAT’s prioritization is similar to the one
described in [18]. In that case, starting from the ASLan specification, we per-
formed the following steps:

• we obtained the eXtensible Markup Language (XML) representation of the
original ASLan model,

• we then applied a Extensible Stylesheet Language Transformation (XSLT)
script implementing the mutation, and

• we finally got a set of ASLan mutated models by translating back the XML
mutants into ASLan.

The difference from those passages and what we are presenting here consists in
the fact that for prioritize the AATs (i) we have to introduce the weights coming
from the risk analysis and (ii) we need to allow for the evaluation of all the weights
coming from all possible mutations. To fulfill these objectives we implemented
new mutating operators and modified those we have already implemented in or-
der to deal with weights. We achieved (i) by assigning a weight to each mutation
operator and to the mutated steps it introduces into the original specification by
encoding the integer value in the name of the mutated step. This relation between
operators and weights is given by the risk analysis which determines the likeli-
ness of the presence of implementation errors, e.g., missing authorization checks,
employment of a non-fresh value as nonce, which causes specific vulnerabilities

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 31/49

Listing 1: Excerpt of the NSPK_Lowe.aslan specification
step step_003_Initiator__line_16(E_S_IID, E_S_I_Actor , E_S_I_B, E_S_I_IID , Na,

Na_1, Nb) :=
child(E_S_IID, E_S_I_IID).
not(dishonest(E_S_I_Actor)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 1, E_S_I_B, Na, Nb)
=[exists Na_1]=>
child(E_S_IID, E_S_I_IID).
contains(E_S_I_Actor , secret_Na_set(E_S_IID)).
contains(E_S_I_B, secret_Na_set(E_S_IID)).
iknows(crypt(pk(E_S_I_B), pair(Na_1, E_S_I_Actor))).
secret(Na_1, secret_Na , secret_Na_set(E_S_IID)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 3, E_S_I_B, Na_1, Nb)

in the SUT. In order to achieve (ii) we decided to exploit the model checking
phase by providing SATMC with all the original and mutated step in a single mu-
tant. This is the more significant difference, by an implementation point of view,
from the way we used to mutate the specifications in [23, 24, 18]. It is also the
reason why we had to create a new version of the already existing mutation oper-
ators as they have been implemented to generate a number of mutants equal to the
number of possible way to inject one vulnerability in the given original specifica-
tion. More precisely, they mutate the model by replacing one step with one of its
possible mutated versions1.

Indeed, the weight-based version of the operators creates one single mutants
containing all the original steps plus a number of mutated steps equal to the num-
ber of mutants generated by the corresponding non weight-based version of the
operator. This way, we provide SATMC with all possible additional mutated steps
and, since all of them have a defined weight as they correspond to a vulnerability
that has been injected, a way to order the AATs it is able to find. SATMC has
been modified in order to report all possible AATs, and not only one of them as it
usually did, and to manage the weights assigned to the mutated steps in order to
prioritize the AATs (see Section 3.3 for more details).

To better show how the new weight-based mutation operators work, we give an
example of mutation, highlighting the changes in the mutated steps, and all the de-
tails about the configuration file used in the process. In Listing 1 we reported one
step belonging to the original ASLan specification of the NSPK protocol specifi-
cation with the Lowe’s fix (the entire model is available in Appendix B) on which
we applied the “FreshnessFlaw” operator.

In the reported step agent A, which is the initiator of the protocol, sends to
agent B, the responder, the message {Na, A}_pk(B), where Na is a fresh value.

1Except for the Fact Assertion (FA) operator, and its semantic version, i.e., the Data Sanitiza-
tion Flaw (DSFlaw) operator, described in [18]

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 32/49

This is the first message in every session of the protocol. By applying the Fresh-
nessFlaw operator, we want to inject an error in the protocol, i.e., agent A does
not send a fresh value, but the old value assigned to the respective variable Na.
Therefore in the mutated step added by the mutation operator there is no Na_1 on
the RHS (i.e., no fresh value). In order apply this mutation, we have to set the con-
figuration file in order to instruct the operator to remove the generation of fresh
values for the variable Na. In Listing 2, we can see that the operator needs two
inputs: the name of the variable we are going to target, and the weight assigned to
the mutation.

Listing 2: Configuration file for the FreshnessFlaw operator
<FR>

<variable>Na</variable>
<weight>10</weight>

</FR>

While the first of the two is a regular expression (following the syntax rules
in [1]) to identify the variables for which the generation of fresh values will be
disabled, the second one is an integer representing the associated probability of
the presence of the vulnerability injected by the operator in the SUT’s implemen-
tation. With such a configuration, the FreshnessFlaw operator will look for all the
steps having a string matching Na in the list of variable quantified with the exists
keyword present between the LHS and the RHS, i.e., =[exists Na_1]=> in the
step in Listing 1. For every such step, the operator will create a mutated version
where Na is removed from the list of variables in the conditions (in the case it is
the only one as in the example, the operator will remove entirely the existential
quantification), and all occurrences of Na_1 are replaced with Na. This mutated
step is renamed with the concatenation of the original name with the string result-
ing from the concatenation of _FR_, the variable name in the removed condition,
_mw, and the weight set in the configuration file. The result of the application
of the FreshnessFlaw operator with the configuration file in Listing 2 is shown
in Listing 3. Note that both versions of the step, the original and the mutated
one, are present in the mutated specification; note also that the name of the orig-
inal step is step_003_Initiator__line_16 while the one of the mutated step is
step_003_Initiator__line_16_FR_Na_1_mw10.

3.3 Prioritizing attack traces with SATMC
In this section we present how SATMC can deal with the prioritization of abstract
attack traces. The approach documented below is still under investigation and
further research and development are needed for implementing actual tools.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 33/49

Listing 3: Excerpt of the mutated NSPK_Lowe.aslan specification
step step_003_Initiator__line_16(E_S_IID, E_S_I_Actor , E_S_I_B, E_S_I_IID , Na,

Na_1, Nb) :=
child(E_S_IID, E_S_I_IID).
not(dishonest(E_S_I_Actor)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 1, E_S_I_B, Na, Nb)
=[exists Na_1]=>
child(E_S_IID, E_S_I_IID).
contains(E_S_I_Actor , secret_Na_set(E_S_IID)).
contains(E_S_I_B, secret_Na_set(E_S_IID)).
iknows(crypt(pk(E_S_I_B), pair(Na_1, E_S_I_Actor))).
secret(Na_1, secret_Na , secret_Na_set(E_S_IID)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 3, E_S_I_B, Na_1, Nb)

step step_003_Initiator__line_16_FR_Na_1_mw10(E_S_IID, E_S_I_Actor , E_S_I_B,
E_S_I_IID , Na, Nb) :=

child(E_S_IID, E_S_I_IID).
not(dishonest(E_S_I_Actor)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 1, E_S_I_B, Na, Nb)
=>
child(E_S_IID, E_S_I_IID).
contains(E_S_I_Actor , secret_Na_set(E_S_IID)).
contains(E_S_I_B, secret_Na_set(E_S_IID)).
iknows(crypt(pk(E_S_I_B), pair(Na, E_S_I_Actor))).
secret(Na, secret_Na , secret_Na_set(E_S_IID)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 3, E_S_I_B, Na, Nb)

3.3.1 Enhancing the SATMC approach

In general, SATMC applies to the analysis of the protocol insecurity problem: i.e.
running SATMC on a given protocol model, it determines whether there exists a
trace violating the security requirements, i.e., an attack trace. In particular, since
SATMC relies on a bounded search space representation, it looks for an attack
trace of length less or equal to k, being k the search space limit. If such a trace
exists, SATMC successfully reports it. Otherwise, SATMC ensures that no attack
can be performed in less than k steps. We refer the reader to [5] for a detailed
description.

Clearly, this approach does not allow analysts to obtain multiple attack traces
from a single execution of SATMC. Moreover, if SATMC returns an attack trace,
there is no guarantee that it is the only trace violating one of the goals, or, even
more important, that it is the more relevant attack trace for that protocol Trace
relevance and criticality are system specific. For instance, different attacks can
affect and compromise different resources so impacting more or less disruptively
on the system. In general, one could be interested in finding more than one attack
per analysis and, possibly, order the attack traces according to a given priority
scheme. Hence, SATMC needs to be extended with new features for (i) reporting
a number of abstract attack traces of length less or equal to k and (ii) managing

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 34/49

the weights assigned by mutation operators (see Section 3.2) in order to achieve a
concrete prioritization.

3.3.2 From SAT to Weighted Max-SAT

Given a positive integer k and a protocol specification, SATMC automatically
generates a propositional formula by using sophisticated encoding techniques de-
veloped for planning; state-of-the-art SAT solvers taken off-the-shelf are then used
to check the propositional formula for satisfiability

This approach makes it difficult to prioritize the found solution. Naively, we
could consider the possibility of encoding information about trace priority directly
in the SAT formula. Nevertheless, this solution would lead to extra, unmoti-
vated computational overheads. Thus, we must reconsider the internal structure
of SATMC.

We identified a possible solution in the application of Weighted Max-SAT
solvers in place of standard SAT solvers. Briefly, the maximum satisfiability
problem (Max-SAT) is the problem of finding an assignment of boolean vari-
ables which maximizes the number of clauses of a given formula. Among the
variants to this problem, the weighted Max-SAT is one of the most studied in the
literature.Intuitively, it consists in finding an assignment satisfying a boolean for-
mula and maximizing the a set of weights. Weights are assigned to each clause of
the boolean formula (in CNF format). Satisfied clauses contributes to the overall
value of a solution by summing their weights.

SATMC uses a CNF encoding procedure for feeding the SAT-solver. Obtain-
ing an encoding suitable for weighted Max-SAT consists in extending the current
encoding step by adding weights annotations. Annotations appear in the encoding
before each clause as in the following example.
p wcnf 3 4
10 1 -2 0
3 -1 2 -3 0
8 -3 2 0
5 1 3 0
Here, weights 10, 3, 8 and 5 are applied to the corresponding clauses.

Weights are directly extracted from the annotations injected through model
mutation. Eventually, the output, i.e., a valid assignment, is mapped back to an
abstract attack trace and its weight generates a corresponding trace priority.

3.3.3 Multiple attack traces generation

The approach described above allows for the generation of the abstract attack trace
with the highest priority. Nevertheless, as mentioned in the previous sections, we

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 35/49

would like to generate a number of abstract attack traces ordered according to
the priority. In order to obtain a new model, SATMC simply has to enrich the
formula with a clause preventing the execution of (at least one of) the rules in
the previous attack trace, and then it run again the solver. Alternatively, we can
leverage the features of the state-of-the-art solvers. Indeed, given a formula, they
natively support the generation of a number of models.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 36/49

4 Conclusion
In this document, we presented the work carried out in the scope of the SPaCIoS
project for the development of advanced test case generation techniques. Abstract
test case generation is crucial for SPaCIoS since some crucial activities, e.g., test
case execution, depend on it, e.g., for obtaining meaningful input. The investiga-
tion of new techniques improving and extending the current approaches is a main
concern. Hence, in this document we focussed on presenting the research carried
out for improving test case generation.

In this deliverable, we also identified new techniques and future directions.
Among them, we focussed on LTL separation (Section 2) and attack trace prioriti-
zation (Section 3). The former provides a support for processing and decomposing
LTL specifications. The latter is a useful mechanism for helping security analysts
to find attack traces applying emphasis on certain, system specific issues. Since
some of these aspects are still under investigation, we could not report practical
results. Nevertheless, we identified technologies and tools providing the function-
alities needed for their implementation.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 37/49

A ASLan mutation operator disabling fresh nonces,
FreshnessFlaw_weights.xsl

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"
xmlns:err="http://www.w3.org/2005/xqt-errors"
xmlns:f="http://www.example.com"
exclude-result-prefixes="xs xdt err f fn">

<xsl:output method="xml" indent="yes"/>

<xsl:param name="config-file" as="xs:string" /> <!-- Location of the
configuration file -->

<xsl:param name="input-file" as="xs:string" /> <!-- Location of the input file
-->

<xsl:param name="output-dir" as="xs:string" /> <!-- Location of the input file
-->

<!-- Variable storing the original tree -->
<xsl:variable name="main-doc" as="document -node()" select="/"/>

<!-- Function returning a modified step -->
<!-- it uses template in mode "mutate" which generates steps where the fresh --

>
<!-- generation part of the step is removed -->
<xsl:function name="f:mutated_step" as="node()*">

<xsl:param name="step-name" as="xs:string"/>
<xsl:param name="nonce-name" as="xs:string"/>

<xsl:variable name="out">
<xsl:call -template name="remove_fresh">

<xsl:with -param name="step" as="xs:string" select="$step-name" />
<xsl:with -param name="nonceFresh" as="xs:string" select="$nonce-name" />

</xsl:call -template>
</xsl:variable>
<xsl:copy -of select="$out/step"/>

</xsl:function>

<!-- Variable storing the mutated steps that will be added to the original XML
tree -->

<xsl:variable name="mutatedSteps" as="node()*">
<!-- <xsl:message terminate="no">
test== <xsl:value -of select="$main-doc/aslan/rules/step/exists/variable[

matches(@name,document($config-file)/configuration/FR/variable)]"/>
</xsl:message> -->
<xsl:for-each select="$main-doc/aslan/rules/step/exists/variable[matches(

@name,concat(document($config-file)/configuration/FR/variable,’_\d’))]">
<xsl:sequence select="f:mutated_step(current()/parent::*/parent::*/@name,

current()/@name)" />
<!-- <xsl:message terminate="no">
arguments to mutated_step = <xsl:value -of select="current()/parent::*/

parent::*/@name" />
</xsl:message> -->

</xsl:for-each>

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 38/49

</xsl:variable>

<!-- main template which invokes the sub-templates defined below -->
<xsl:template match="/">

<!-- <xsl:message terminate="no">
mutatedSteps = <xsl:copy -of select="$mutatedSteps[1]" />

</xsl:message> -->
<xsl:variable name="uri" select="concat($output-dir, ’/’, substring -before($

input-file, ’.xml’), ’_FR_weights ’, ’.xml’)"/>

<xsl:result -document href="{$uri}">
<xsl:apply -templates select="$main-doc" mode="once" />

</xsl:result -document>
</xsl:template>

<!-- the identity/copy template -->
<xsl:template match="node() | @*" mode="once">

<xsl:copy>
<xsl:apply -templates select="@* | node()" mode="once"/>

</xsl:copy>
</xsl:template>

<xsl:template match="aslan/rules/step" mode="once">
<xsl:copy -of select="."/>
<xsl:variable name="stepNumber" select="substring(current()/@name ,1,8)"/>
<xsl:for-each select="$mutatedSteps">

<xsl:choose>
<!-- if step_XYZ original matches with the mutated one -->
<!-- then we insert the mutated one -->
<xsl:when test="substring(current()/@name ,1,8) = $stepNumber">

<xsl:copy -of select="."/>
</xsl:when>
<xsl:otherwise/>

</xsl:choose>
</xsl:for-each>

</xsl:template>

<xsl:template name="remove_fresh" as="node()">
<xsl:param name="step" as="xs:string" />
<xsl:param name="nonceFresh" as="xs:string" />

<xsl:for-each select="$main-doc/aslan/rules/step[@name=$step]">
<!-- First of all we copy the <step> tag and we nodify his attribute "name"

-->
<xsl:copy>

<xsl:attribute name="name">
<xsl:value -of select="concat(current()/@name, ’_FR_’ , $nonceFresh , ’

_mw’, document($config-file)/configuration/FR/weight)"/>
</xsl:attribute>
<!-- then we process its children , i.e., comments , lhs, conditions ,

exists, rhs -->
<!-- in order to mutate it by removing the creation of the fresh value --

>
<xsl:for-each select="child::node()">
<xsl:choose>

<!-- copying the parameters except the nonce and adjisting the position
attribute -->

<xsl:when test="name(.)=’parameters ’">
<xsl:element name="parameters">

<xsl:variable name="params" as="node()+">
<xsl:for-each select="child::node()">

<xsl:if test="not(current()/@name = $nonceFresh)">

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 39/49

<xsl:sequence select="current()"/>
</xsl:if>

</xsl:for-each>
</xsl:variable>

<xsl:for-each select="$params">
<xsl:copy>

<xsl:attribute name="name">
<xsl:value -of select="current()/@name"/>

</xsl:attribute>
<xsl:attribute name="position">

<xsl:value -of select="floor(position() div 2)"/>
</xsl:attribute>

</xsl:copy>
</xsl:for-each>

</xsl:element>
</xsl:when>

<!-- removing nonce from exists -->
<xsl:when test="name(.)=’exists’">

<xsl:choose>
<xsl:when test="count(child::*/node()) = 1"/>
<xsl:otherwise>

<xsl:element name="exists">
<xsl:for-each select="child::node()">

<xsl:if test="not(current()/@name = $nonceFresh)">
<xsl:copy -of select="."/>

</xsl:if>
</xsl:for-each>

</xsl:element>
</xsl:otherwise>

</xsl:choose>
</xsl:when>

<!-- changing the rhs side -->
<xsl:when test="name(.)=’rhs’">

<!-- <xsl:element name="rhs">
<xsl:for-each select="descendant::node()"> -->

<xsl:apply -templates select="." mode="remove">
<xsl:with -param name="var" select="$nonceFresh" />

</xsl:apply -templates>
<!-- </xsl:for-each>
</xsl:element>-->

</xsl:when>

<!-- copying what we do not want to change, e.g. lhs side, conditions
-->

<xsl:otherwise>
<xsl:copy -of select="."/>

</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

</xsl:copy>
</xsl:for-each>

</xsl:template>

<!--
<xsl:template name="replace_fresh_var">

<xsl:param name="var" />

<xsl:choose>
<xsl:when test="not(name(.)=’variable ’) or not(current()/@name=$var)">

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 40/49

<xsl:copy>
<xsl:call -template name="replace_fresh_var">

<xsl:with -param name="var" select="$var"/>
</xsl:call -template>

</xsl:copy>
</xsl:when>
<xsl:otherwise>

<xsl:copy>
<xsl:attribute name="name">

<xsl:value -of select="substring(@name,1,string-length(@name)-2)"/>
</xsl:attribute>

</xsl:copy>
</xsl:otherwise>

</xsl:choose>
</xsl:template> -->

<!-- the identity/copy template modified to remove the last two characters from
the fresh variable name -->

<xsl:template match="node() | @*" mode="remove">
<xsl:param name="var" />
<xsl:copy>

<xsl:apply -templates select="@* | node()" mode="remove">
<xsl:with -param name="var" select="$var" />

</xsl:apply -templates>
</xsl:copy>

</xsl:template>

<xsl:template match="@name" mode="remove">
<xsl:param name="var"/>

<xsl:attribute name="name">
<xsl:choose>

<xsl:when test=". = $var">
<xsl:value -of select="substring(.,1,string-length(.)-2)"/>

</xsl:when>
<xsl:otherwise>

<xsl:value -of select="." />
</xsl:otherwise>

</xsl:choose>
</xsl:attribute>

</xsl:template>

</xsl:stylesheet>

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 41/49

B ASLan specification of the NSPK protocol with
Lowe’s fix

% @specification(NSPK_Lowe_Safe)
% @channel_model(CCM)
% @connector_name(ASLan++ Connector)
% @connector_version(1.4.7)
% @connector_options(-opt LUMP -hc ALL -gas)
% @satmc(--mutex=1)

section signature:

text > slabel
ak : agent -> public_key
child : nat * nat -> fact
ck : agent -> public_key
defaultPseudonym : agent * nat -> public_key
dishonest : agent -> fact
hash : message -> message
pk : agent -> public_key
secret_Na_set : nat -> set(agent)
secret_Nb_set : nat -> set(agent)
state_Environment : agent * nat * nat -> fact
state_Initiator : agent * nat * nat * agent * text * text -> fact
state_Responder : agent * nat * nat * agent * text * text -> fact
state_Session : agent * nat * nat * agent * agent -> fact
succ : nat -> nat

section types:

A : agent
AM : message
AR : agent
AW : agent
Actor : agent
Ak_arg_1 : agent
B : agent
C : agent
Ck_arg_1 : agent
D : agent
Dummy : agent
% @original_name(name=Actor)
E_S_Actor : agent
% @original_name(name=IID)
E_S_IID : nat
% @original_name(name=Actor)
E_S_I_Actor : agent
% @original_name(name=B)
E_S_I_B : agent
% @original_name(name=IID)
E_S_I_IID : nat
% @original_name(name=SL)
E_S_I_SL : nat
% @original_name(name=A)
E_S_R_A : agent
% @original_name(name=A; match=true)
E_S_R_A_1 : agent
% @original_name(name=Actor)
E_S_R_Actor : agent
% @original_name(name=IID)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 42/49

E_S_R_IID : nat
% @original_name(name=Na)
E_S_R_Na : text
% @original_name(name=Na; match=true)
E_S_R_Na_1 : text
% @original_name(name=Nb)
E_S_R_Nb : text
% @original_name(name=Nb; fresh=true)
E_S_R_Nb_1 : text
% @original_name(name=SL)
E_S_R_SL : nat
% @original_name(name=SL)
E_S_SL : nat
% @original_name(name=IID)
E_aIaR_IID : nat
% @original_name(name=AM)
E_aRaI_AM : message
% @original_name(name=AR)
E_aRaI_AR : agent
% @original_name(name=AW)
E_aRaI_AW : agent
% @original_name(name=IID)
E_aRaI_IID : nat
% @original_name(name=FM)
E_fRaI_FM : message
% @original_name(name=FR)
E_fRaI_FR : agent
% @original_name(name=FW)
E_fRaI_FW : agent
% @original_name(name=IID1)
E_fRaI_IID1 : nat
% @original_name(name=IID2)
E_fRaI_IID2 : nat
% @original_name(name=Knowers)
E_sN_Knowers : set(agent)
% @original_name(name=Msg)
E_sN_Msg : message
% @original_name(name=A)
E_siS_A : agent
% @original_name(name=B)
E_siS_B : agent
FM : message
FR : agent
FW : agent
Hash_arg_1 : message
IID : nat
IID1 : nat
IID2 : nat
% @original_name(name=IID; fresh=true)
IID_1 : nat
% @original_name(name=IID; fresh=true)
IID_2 : nat
% @original_name(name=IID; fresh=true)
IID_3 : nat
% @original_name(name=IID; fresh=true)
IID_4 : nat
Knowers : set(agent)
Msg : message
Na : text
% @original_name(name=Na; fresh=true)
Na_1 : text
Nb : text

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 43/49

% @original_name(name=Nb; match=true)
Nb_1 : text
Pk_arg_1 : agent
SL : nat
Succ_arg_1 : nat
atag : slabel
auth_Initiator_authenticates_Responder : protocol_id
auth_Responder_authenticates_Initiator : protocol_id
ctag : slabel
dummy_agent_1 : agent
dummy_agent_2 : agent
dummy_nat : nat
dummy_text : text
false : fact
fresh_Initiator_authenticates_Responder : protocol_id
fresh_Responder_authenticates_Initiator : protocol_id
root : agent
secret_Na : protocol_id
secret_Nb : protocol_id
stag : slabel
% @original_name(name=C)
symbolic_C : agent
% @original_name(name=D)
symbolic_D : agent
% @original_name(name=A)
symbolic_E_siS_A : agent
% @original_name(name=B)
symbolic_E_siS_B : agent
true : fact

section inits:

% @new_instance(new_entity=Environment; Actor=root; IID=0; SL=1)
initial_state init :=

child(dummy_nat , 0).
dishonest(i).
iknows(0).
iknows(atag).
iknows(ctag).
iknows(i).
iknows(inv(ak(i))).
iknows(inv(ck(i))).
iknows(inv(pk(i))).
iknows(root).
iknows(stag).
iknows(symbolic_C).
iknows(symbolic_D).
iknows(symbolic_E_siS_A).
iknows(symbolic_E_siS_B).
state_Environment(root, 0, 1).
true

section hornClauses:

hc public_ck(Ck_arg_1) :=
iknows(ck(Ck_arg_1)) :-

iknows(Ck_arg_1)

hc public_ak(Ak_arg_1) :=
iknows(ak(Ak_arg_1)) :-

iknows(Ak_arg_1)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 44/49

hc public_pk(Pk_arg_1) :=
iknows(pk(Pk_arg_1)) :-

iknows(Pk_arg_1)

hc public_hash(Hash_arg_1) :=
iknows(hash(Hash_arg_1)) :-

iknows(Hash_arg_1)

hc public_succ(Succ_arg_1) :=
iknows(succ(Succ_arg_1)) :-

iknows(Succ_arg_1)

hc inv_succ_1(Succ_arg_1) :=
iknows(Succ_arg_1) :-

iknows(succ(Succ_arg_1))

section rules:

% @guard(entity=Environment; iid=IID; line=53; test=not(equal(E_siS_A, E_siS_B)))
% @new_instance(entity=Environment; iid=IID; line=53; new_entity=Session; Actor=

dummy_agent_1; IID=IID_1; SL=1; A=E_siS_A; B=E_siS_B)
% @guard(entity=Environment; iid=IID; line=54; test=not(equal(C, D)))
% @new_instance(entity=Environment; iid=IID; line=54; new_entity=Session; Actor=

dummy_agent_2; IID=IID_2; SL=1; A=C; B=D)
% @step_label(entity=Environment; iid=IID; line=54; variable=SL; term=3)
step step_001_Environment__line_53(Actor, C, D, E_siS_A, E_siS_B, IID, IID_1,

IID_2) :=
iknows(C).
iknows(D).
iknows(E_siS_A).
iknows(E_siS_B).
state_Environment(Actor, IID, 1) &
not(equal(C, D)) &
not(equal(E_siS_A, E_siS_B))
=[exists IID_1, IID_2]=>
child(IID, IID_1).
child(IID, IID_2).
iknows(C).
iknows(D).
iknows(E_siS_A).
iknows(E_siS_B).
state_Environment(Actor, IID, 3).
state_Session(dummy_agent_1 , IID_1, 1, E_siS_A, E_siS_B).
state_Session(dummy_agent_2 , IID_2, 1, C, D)

% @new_instance(entity=Session; iid=E_S_IID; line=40; new_entity=Initiator; Actor
=A; IID=IID_3; SL=1; B=B; Na=dummy_text; Nb=dummy_text)

% @new_instance(entity=Session; iid=E_S_IID; line=41; new_entity=Responder; Actor
=B; IID=IID_4; SL=1; A=A; Na=dummy_text; Nb=dummy_text)

% @step_label(entity=Session; iid=E_S_IID; line=41; variable=SL; term=3)
step step_002_Session__line_40(A, B, E_S_Actor , E_S_IID, IID_3, IID_4) :=

not(dishonest(E_S_Actor)).
state_Session(E_S_Actor , E_S_IID, 1, A, B)
=[exists IID_3, IID_4]=>
child(E_S_IID, IID_3).
child(E_S_IID, IID_4).
state_Initiator(A, IID_3, 1, B, dummy_text , dummy_text).
state_Responder(B, IID_4, 1, A, dummy_text , dummy_text).
state_Session(E_S_Actor , E_S_IID, 3, A, B)

% @fresh(entity=Initiator; iid=E_S_I_IID; line=16; variable=Na; term=Na_1)
% @introduce(entity=Initiator; iid=E_S_I_IID; line=16; fact=secret(Na_1,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 45/49

secret_Na , secret_Na_set(E_S_IID)))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=16; fact=contains(E_S_I_Actor ,

secret_Na_set(E_S_IID)))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=16; fact=contains(E_S_I_B,

secret_Na_set(E_S_IID)))
% @communication(entity=Initiator; iid=E_S_I_IID; line=17; sender=E_S_I_Actor;

receiver=E_S_I_B; payload=crypt(pk(E_S_I_B), pair(Na_1, E_S_I_Actor));
channel=regularCh; fact=iknows(crypt(pk(E_S_I_B), pair(Na_1, E_S_I_Actor)));
direction=send)

% @step_label(entity=Initiator; iid=E_S_I_IID; line=17; variable=SL; term=3)
step step_003_Initiator__line_16(E_S_IID, E_S_I_Actor , E_S_I_B, E_S_I_IID , Na,

Na_1, Nb) :=
child(E_S_IID, E_S_I_IID).
not(dishonest(E_S_I_Actor)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 1, E_S_I_B, Na, Nb)
=[exists Na_1]=>
child(E_S_IID, E_S_I_IID).
contains(E_S_I_Actor , secret_Na_set(E_S_IID)).
contains(E_S_I_B, secret_Na_set(E_S_IID)).
iknows(crypt(pk(E_S_I_B), pair(Na_1, E_S_I_Actor))).
secret(Na_1, secret_Na , secret_Na_set(E_S_IID)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 3, E_S_I_B, Na_1, Nb)

% @communication(entity=Initiator; iid=E_S_I_IID; line=18; sender=E_S_I_B;
receiver=E_S_I_Actor; payload=crypt(pk(E_S_I_Actor), pair(Na, pair(Nb_1,
E_S_I_B))); channel=regularCh; fact=iknows(crypt(pk(E_S_I_Actor), pair(Na,
pair(Nb_1, E_S_I_B)))); direction=receive)

% @match(entity=Initiator; iid=E_S_I_IID; line=18; variable=Nb; term=Nb_1)
% @introduce(entity=Initiator; iid=E_S_I_IID; line=18; fact=request(E_S_I_Actor ,

E_S_I_B, auth_Initiator_authenticates_Responder , Na, E_S_I_IID))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=18; fact=request(E_S_I_Actor ,

E_S_I_B, fresh_Initiator_authenticates_Responder , Na, E_S_I_IID))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=18; fact=secret(Nb_1,

secret_Nb , secret_Nb_set(E_S_IID)))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=18; fact=contains(E_S_I_Actor ,

secret_Nb_set(E_S_IID)))
% @introduce(entity=Initiator; iid=E_S_I_IID; line=18; fact=contains(E_S_I_B,

secret_Nb_set(E_S_IID)))
% @communication(entity=Initiator; iid=E_S_I_IID; line=20; sender=E_S_I_Actor;

receiver=E_S_I_B; payload=crypt(pk(E_S_I_B), Nb_1); channel=regularCh; fact=
iknows(crypt(pk(E_S_I_B), Nb_1)); direction=send)

% @introduce(entity=Initiator; iid=E_S_I_IID; line=20; fact=witness(E_S_I_Actor ,
E_S_I_B, auth_Responder_authenticates_Initiator , Nb_1))

% @step_label(entity=Initiator; iid=E_S_I_IID; line=20; variable=SL; term=5)
step step_004_Initiator__line_18(E_S_IID, E_S_I_Actor , E_S_I_B, E_S_I_IID , Na, Nb

, Nb_1) :=
child(E_S_IID, E_S_I_IID).
iknows(crypt(pk(E_S_I_Actor), pair(Na, pair(Nb_1, E_S_I_B)))).
state_Initiator(E_S_I_Actor , E_S_I_IID , 3, E_S_I_B, Na, Nb)
=>
child(E_S_IID, E_S_I_IID).
contains(E_S_I_Actor , secret_Nb_set(E_S_IID)).
contains(E_S_I_B, secret_Nb_set(E_S_IID)).
iknows(crypt(pk(E_S_I_B), Nb_1)).
request(E_S_I_Actor , E_S_I_B, auth_Initiator_authenticates_Responder , Na,

E_S_I_IID).
request(E_S_I_Actor , E_S_I_B, fresh_Initiator_authenticates_Responder , Na,

E_S_I_IID).
secret(Nb_1, secret_Nb , secret_Nb_set(E_S_IID)).
state_Initiator(E_S_I_Actor , E_S_I_IID , 5, E_S_I_B, Na, Nb_1).
witness(E_S_I_Actor , E_S_I_B, auth_Responder_authenticates_Initiator , Nb_1)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 46/49

% @communication(entity=Responder; iid=E_S_R_IID; line=30; sender=Dummy; receiver
=E_S_R_Actor; payload=crypt(pk(E_S_R_Actor), pair(E_S_R_Na_1 , E_S_R_A_1));
channel=regularCh; fact=iknows(crypt(pk(E_S_R_Actor), pair(E_S_R_Na_1 ,
E_S_R_A_1))); direction=receive)

% @match(entity=Responder; iid=E_S_R_IID; line=30; variable=A; term=E_S_R_A_1)
% @match(entity=Responder; iid=E_S_R_IID; line=30; variable=Na; term=E_S_R_Na_1)
% @fresh(entity=Responder; iid=E_S_R_IID; line=31; variable=Nb; term=E_S_R_Nb_1)
% @introduce(entity=Responder; iid=E_S_R_IID; line=31; fact=secret(E_S_R_Nb_1 ,

secret_Nb , secret_Nb_set(E_S_IID)))
% @introduce(entity=Responder; iid=E_S_R_IID; line=31; fact=contains(E_S_R_A_1 ,

secret_Nb_set(E_S_IID)))
% @introduce(entity=Responder; iid=E_S_R_IID; line=31; fact=contains(E_S_R_Actor ,

secret_Nb_set(E_S_IID)))
% @communication(entity=Responder; iid=E_S_R_IID; line=32; sender=E_S_R_Actor;

receiver=E_S_R_A_1; payload=crypt(pk(E_S_R_A_1), pair(E_S_R_Na_1 , pair(
E_S_R_Nb_1 , E_S_R_Actor))); channel=regularCh; fact=iknows(crypt(pk(E_S_R_A_1
), pair(E_S_R_Na_1 , pair(E_S_R_Nb_1 , E_S_R_Actor)))); direction=send)

% @introduce(entity=Responder; iid=E_S_R_IID; line=32; fact=witness(E_S_R_Actor ,
E_S_R_A_1 , auth_Initiator_authenticates_Responder , E_S_R_Na_1))

% @step_label(entity=Responder; iid=E_S_R_IID; line=32; variable=SL; term=4)
step step_005_Responder__line_30(E_S_IID, E_S_R_A, E_S_R_A_1 , E_S_R_Actor ,

E_S_R_IID , E_S_R_Na, E_S_R_Na_1 , E_S_R_Nb, E_S_R_Nb_1) :=
child(E_S_IID, E_S_R_IID).
iknows(crypt(pk(E_S_R_Actor), pair(E_S_R_Na_1 , E_S_R_A_1))).
not(dishonest(E_S_R_Actor)).
state_Responder(E_S_R_Actor , E_S_R_IID , 1, E_S_R_A, E_S_R_Na , E_S_R_Nb)
=[exists E_S_R_Nb_1]=>
child(E_S_IID, E_S_R_IID).
contains(E_S_R_A_1 , secret_Nb_set(E_S_IID)).
contains(E_S_R_Actor , secret_Nb_set(E_S_IID)).
iknows(crypt(pk(E_S_R_A_1), pair(E_S_R_Na_1 , pair(E_S_R_Nb_1 , E_S_R_Actor)))).
secret(E_S_R_Nb_1 , secret_Nb , secret_Nb_set(E_S_IID)).
state_Responder(E_S_R_Actor , E_S_R_IID , 4, E_S_R_A_1 , E_S_R_Na_1 , E_S_R_Nb_1).
witness(E_S_R_Actor , E_S_R_A_1 , auth_Initiator_authenticates_Responder ,

E_S_R_Na_1)

% @communication(entity=Responder; iid=E_S_R_IID; line=33; sender=E_S_R_A;
receiver=E_S_R_Actor; payload=crypt(pk(E_S_R_Actor), E_S_R_Nb); channel=
regularCh; fact=iknows(crypt(pk(E_S_R_Actor), E_S_R_Nb)); direction=receive)

% @introduce(entity=Responder; iid=E_S_R_IID; line=33; fact=request(E_S_R_Actor ,
E_S_R_A, auth_Responder_authenticates_Initiator , E_S_R_Nb , E_S_R_IID))

% @introduce(entity=Responder; iid=E_S_R_IID; line=33; fact=request(E_S_R_Actor ,
E_S_R_A, fresh_Responder_authenticates_Initiator , E_S_R_Nb , E_S_R_IID))

% @assignment(entity=Responder; iid=E_S_R_IID; line=34; variable=Na; term=
E_S_R_Na)

% @introduce(entity=Responder; iid=E_S_R_IID; line=34; fact=secret(E_S_R_Na,
secret_Na , secret_Na_set(E_S_IID)))

% @introduce(entity=Responder; iid=E_S_R_IID; line=34; fact=contains(E_S_R_A,
secret_Na_set(E_S_IID)))

% @introduce(entity=Responder; iid=E_S_R_IID; line=34; fact=contains(E_S_R_Actor ,
secret_Na_set(E_S_IID)))

% @step_label(entity=Responder; iid=E_S_R_IID; line=34; variable=SL; term=6)
step step_006_Responder__line_33(E_S_IID, E_S_R_A, E_S_R_Actor , E_S_R_IID ,

E_S_R_Na , E_S_R_Nb) :=
child(E_S_IID, E_S_R_IID).
iknows(crypt(pk(E_S_R_Actor), E_S_R_Nb)).
state_Responder(E_S_R_Actor , E_S_R_IID , 4, E_S_R_A, E_S_R_Na , E_S_R_Nb)
=>
child(E_S_IID, E_S_R_IID).
contains(E_S_R_A, secret_Na_set(E_S_IID)).
contains(E_S_R_Actor , secret_Na_set(E_S_IID)).
request(E_S_R_Actor , E_S_R_A, auth_Responder_authenticates_Initiator , E_S_R_Nb,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 47/49

E_S_R_IID).
request(E_S_R_Actor , E_S_R_A, fresh_Responder_authenticates_Initiator , E_S_R_Nb

, E_S_R_IID).
secret(E_S_R_Na, secret_Na , secret_Na_set(E_S_IID)).
state_Responder(E_S_R_Actor , E_S_R_IID , 6, E_S_R_A, E_S_R_Na , E_S_R_Nb)

section goals:

% @goal(name=auth_Initiator_authenticates_Responder; line=47; AM=AM; AR=AR; AW=AW
; IID=E_aIaR_IID)

attack_state auth_Initiator_authenticates_Responder(AM, AR, AW, E_aIaR_IID) :=
not(dishonest(AW)).
not(witness(AW, AR, auth_Initiator_authenticates_Responder , AM)).
request(AR, AW, auth_Initiator_authenticates_Responder , AM, E_aIaR_IID)

% @goal(name=auth_Responder_authenticates_Initiator; line=48; AM=E_aRaI_AM; AR=
E_aRaI_AR; AW=E_aRaI_AW; IID=E_aRaI_IID)

attack_state auth_Responder_authenticates_Initiator(E_aRaI_AM , E_aRaI_AR ,
E_aRaI_AW , E_aRaI_IID) :=

not(dishonest(E_aRaI_AW)).
not(witness(E_aRaI_AW , E_aRaI_AR , auth_Responder_authenticates_Initiator ,

E_aRaI_AM)).
request(E_aRaI_AR , E_aRaI_AW , auth_Responder_authenticates_Initiator , E_aRaI_AM

, E_aRaI_IID)

% @goal(name=fresh_Initiator_authenticates_Responder; line=47; FM=FM; FR=FR; FW=
FW; IID1=IID1; IID2=IID2)

attack_state fresh_Initiator_authenticates_Responder(FM, FR, FW, IID1, IID2) :=
not(dishonest(FW)).
request(FR, FW, fresh_Initiator_authenticates_Responder , FM, IID1).
request(FR, FW, fresh_Initiator_authenticates_Responder , FM, IID2) &
not(equal(IID1, IID2))

% @goal(name=fresh_Responder_authenticates_Initiator; line=48; FM=E_fRaI_FM; FR=
E_fRaI_FR; FW=E_fRaI_FW; IID1=E_fRaI_IID1; IID2=E_fRaI_IID2)

attack_state fresh_Responder_authenticates_Initiator(E_fRaI_FM , E_fRaI_FR ,
E_fRaI_FW , E_fRaI_IID1 , E_fRaI_IID2) :=

not(dishonest(E_fRaI_FW)).
request(E_fRaI_FR , E_fRaI_FW , fresh_Responder_authenticates_Initiator ,

E_fRaI_FM , E_fRaI_IID1).
request(E_fRaI_FR , E_fRaI_FW , fresh_Responder_authenticates_Initiator ,

E_fRaI_FM , E_fRaI_IID2) &
not(equal(E_fRaI_IID1 , E_fRaI_IID2))

% @goal(name=secret_Na; line=45; Knowers=Knowers; Msg=Msg)
attack_state secret_Na(Knowers, Msg) :=

iknows(Msg).
not(contains(i, Knowers)).
secret(Msg, secret_Na , Knowers)

% @goal(name=secret_Nb; line=46; Knowers=E_sN_Knowers; Msg=E_sN_Msg)
attack_state secret_Nb(E_sN_Knowers , E_sN_Msg) :=

iknows(E_sN_Msg).
not(contains(i, E_sN_Knowers)).
secret(E_sN_Msg, secret_Nb , E_sN_Knowers)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D3.1: Advanced Test case generation techniques 48/49

References
[1] A. Malhotra et al. XQuery 1.0 and XPath 2.0 Functions and Operators (Sec-

ond Edition). Available at http://www.w3.org/TR/xquery-operators/
#regex-syntax, 2007.

[2] M. W. Alford, L. Lamport, and G. P. Mullery. Basic concepts. In M. W.
Alford, J.-P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P. Mullery, and
F. B. Schneider, editors, Advanced Course: Distributed Systems, volume 190
of Lecture Notes in Computer Science, pages 7–43. Springer, 1984.

[3] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett.,
21(4):181–185, 1985.

[4] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[5] A. Armando and L. Compagna. SAT-based Model-Checking for Security
Protocols Analysis. International Journal of Information Security, 7(1):3–
32, January 2008.

[6] A. Biere. Bounded model checking. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 457–481. IOS Press, 2009.

[7] J. Büchi. On a decision method in restricted second order arithmetic. In
Proc. International Congress on Logic, Method, and Philosophy of Science,
pages 1–12. Stanford University Press, 1962.

[8] A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of past LTL.
In A. J. Hu and A. K. Martin, editors, FMCAD, volume 3312 of Lecture
Notes in Computer Science, pages 245–259. Springer, 2004.

[9] M. Fisher. A normal form for temporal logics and its applications in
theorem-proving and execution. J. Log. Comput., 7(4):429–456, 1997.

[10] D. M. Gabbay. The declarative past and imperative future: Executable
temporal logic for interactive systems. In B. Banieqbal, H. Barringer, and
A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 409–448. Springer, 1987.

[11] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of
fairness. In P. W. Abrahams, R. J. Lipton, and S. R. Bourne, editors, POPL,
pages 163–173. ACM Press, 1980.

[12] I. M. Hodkinson and M. Reynolds. Separation - past, present, and future.
In S. N. Artëmov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://www.w3.org/TR/xquery-operators/#regex-syntax
http://www.w3.org/TR/xquery-operators/#regex-syntax

D3.1: Advanced Test case generation techniques 49/49

J. Woods, editors, We Will Show Them! (2), pages 117–142. College Publi-
cations, 2005.

[13] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

[14] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

[15] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In
R. Parikh, editor, Logic of Programs, volume 193 of Lecture Notes in Com-
puter Science, pages 196–218. Springer, 1985.

[16] N. Markey. Temporal logic with past is exponentially more succinct, con-
currency column. Bulletin of the EATCS, 79:122–128, 2003.

[17] A. Nerode. Linear automaton transformations. In AMS, volume 9. AMS,
1958.

[18] J. Oudinet, A. Calvi, and M. Büchler. Evaluation of aslan mutation opera-
tors. In M. Veanes and L. Viganò, editors, Tests and Proofs, volume 7942
of Lecture Notes in Computer Science, pages 178–196. Springer Berlin Hei-
delberg, 2013.

[19] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE
Computer Society, 1977.

[20] A. Prior. Time and Modality. Oxford University Press, London, 1957.

[21] A. P. Sistla. On characterization of safety and liveness properties in temporal
logic. In M. A. Malcolm and H. R. Strong, editors, PODC, pages 39–48.
ACM, 1985.

[22] A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal Asp.
Comput., 6(5):495–512, 1994.

[23] SPaCIoS. Deliverable 2.4.1: Definition of Attacker Behavior Models, 2012.

[24] SPaCIoS. Deliverable 3.2: SPaCIoS Methodology and technology for
property-driven security testing, 2013.

[25] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, 1983.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

	Introduction
	Property-driven test case generation
	LTL separation
	Syntax and Semantics of LTL
	LTL Separation
	Safety and Liveness
	A right invariance equivalence relation on
	Canonical Separation
	Closure and Decomposition
	Characterizing Liveness and Safety
	Characterizing Stability, Absolute Liveness, and Fairness

	SATMC abstract attack trace generation
	SAT-reduction technique for First Order Linear Temporal Logic

	Vulnerability-driven Test Case Generation
	AAT prioritization
	Model mutation
	Prioritizing attack traces with SATMC
	Enhancing the SATMC approach
	From SAT to Weighted Max-SAT
	Multiple attack traces generation

	Conclusion
	ASLan mutation operator disabling fresh nonces, FreshnessFlaw_weights.xsl
	ASLan specification of the NSPK protocol with Lowe's fix
	References

