
Secure Provision and Consumption
in the Internet of Services

FP7-ICT-2009-5, ICT-2009.1.4 (Trustworthy ICT)

Project No. 257876

www.spacios.eu

Deliverable D2.3.1
Definition and Description of Security

Goals

Abstract
This deliverable concerns the definition of security goals in SPaCIoS. Its main
contributions are the formalization in ASLan++ of the security goals derived
from our problem cases, and a feasibility study on verifying the goals, in
the context of their corresponding problem cases, using SATMC and other
back-ends of the AVANTSSAR Platform. Moreover, we discuss the issues of
asynchronous testing and testing with un-observable events.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 31.03.2012 Due on: 31.03.2012
Editors: all Total pages: 62

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Luca Viganò
Partners: UNIVR, ETH Zurich, INP, KIT, UNIGE, SAP, Siemens, IeAT

http://www.spacios.eu
www.spacios.eu

D2.3.1: Definition and Description of Security Goals 2/62

(this page intentionally left blank)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 3/62

Contents
1 Introduction 6

2 Elicitation of the security goals arising from the problem
cases 7
2.1 WebGoat security goals . 7

2.1.1 Authenticity . 7
2.1.2 Authorization . 7
2.1.3 Confidentiality . 7
2.1.4 Integrity . 8

2.2 SAML 2.0 SSO security goals 8
2.3 OpenID security goals . 9
2.4 OAuth 2.0 security goals . 9
2.5 Pervasive Retail security goals 11
2.6 eHealth security goals . 12

2.6.1 Tentative formalization 14
2.7 Infobase security goals . 17

3 Formalizing and verifying the security goals 20
3.1 WebGoat . 20

3.1.1 Authenticity . 20
3.1.2 Authorization . 20
3.1.3 Confidentiality . 25
3.1.4 Integrity . 25
3.1.5 Verification of Goals 26

3.2 SAML-SSO . 26
3.2.1 Client Authentication 27
3.2.2 Service Provider Authentication 27
3.2.3 Confidentiality of Resource 28
3.2.4 Confidentiality of Authentication data 28
3.2.5 Integrity . 29

3.3 OpenID . 29
3.3.1 Mutual authentication 29
3.3.2 Confidentiality . 30
3.3.3 Authorization . 31

3.4 OAuth 2.0 . 32
3.4.1 Client Authentication 32
3.4.2 Authorization . 33

3.5 Pervasive Retail . 33
3.5.1 Mutual authentication 34

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 4/62

3.5.2 Secrecy . 34
3.5.3 Non repudiation . 35
3.5.4 Authorization . 35
3.5.5 Privacy . 36
3.5.6 Need to know . 36

3.6 Infobase . 36
3.6.1 Confidentiality of authentication data (passwords) . . . 37
3.6.2 Confidentiality of content stored into the repository . . 37
3.6.3 Confidentiality of cookies 38
3.6.4 Confidentiality of responses from the Repository . . . 39
3.6.5 Authorization of requests 39
3.6.6 Integrity of requests 39

4 Discussions 40
4.1 Unobservable events . 40
4.2 Testability in asynchronous settings 41

5 Conclusion 43

References 44

A LTL Definitions (recap) 45

B OAuth 2.0 Formal Model 46

C SAML model 54

D Infobase model 57

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 5/62

List of Tables
1 Results of checking WebGoat security goals with each backend 26
2 Facts and their informal meaning 41
3 LTL operators for specifying goals 45
4 Non-strict LTL syntax and semantics 46

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 6/62

1 Introduction
This deliverable concerns the definition of security goals in SPaCIoS. The
security goals are derived from our problem cases, which are described in the
SPaCIoS Deliverables D.2.1.1 [9] and D5.1 [10]. Here, we give a formal speci-
fication of the security goals in ASLan++. These specifications are therefore
expressed as formulas in the linear temporal logic (LTL), or using the key-
words that are envisioned for defining goals in ASLan++ such as assertions
and confidentiality sets; see [2] for more details. The latter specifications can
in general be translated into LTL; however, they are sometimes amenable to
more efficient verification techniques in the AVANTSSAR back-ends.

After specifying the security goals, we have conducted a feasibility study
on verifying the goals, in the context of their corresponding problem cases,
using SATMC and other AVANTSSAR back-ends. We report on the feasibil-
ity study in this deliverable. The key finding of the study can be summarized
as follows. In a number of cases, we observed that our initial formalization of
security goals cannot be handled by the verification back-ends. We however
realized that it is sometimes possible to transform such goals into “equiva-
lent” goals that can be verified using the AVANTSSAR platform. We discuss
such transformations in the following sections.

In addition to the formalization of the security goals and the investigation
of the feasibility of their verification, in this deliverable we also discuss the
issues of asynchronous testing and testing with un-observable events.

Structure of the document. The deliverable is structured as follows. In
Section 2, we elicit the security goals arising from our problem cases. These
security goals are formalized in Section 3, where we also study whether they
can be verified using the AVANTSSAR platform. In Section 4, we discuss
the issues of asynchronous testing and testing with un-observable events.
Section 5 concludes the deliverable. In appendix A, we recap the syntax
and semantics of LTL. In appendix B, we present the formal model of Client
Authentication in ACF flow for OAuth 2.0.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 7/62

2 Elicitation of the security goals arising from
the problem cases

2.1 WebGoat security goals
In this section, we present the different security goals that arise from the
WebGoat application scenario.

2.1.1 Authenticity

The two lessons in WebGoat that directly address authentication problems
are based on low level vulnerabilities (i.e., vulnerable encryption functions),
which are out of the scope of SPaCIoS. However, several lessons rely on a
role-based access control (RBAC) system. If someone can bypass the authen-
tication system, then other security properties can be violated. For example,
when a malicious user mounts a XSS attack, he is able to execute a script
with the victim’s privileges, therefore violating an authenticity goal.

2.1.2 Authorization

Several lessons aim at bypassing a role-based authorization system to access
confidential data by an unauthorized user. For example, in the stored cross-
site scripting (XSS) lesson, a user can store in his profile a script that will be
executed by anyone that views this profile. Thus, a malicious user can craft
a script that will execute with all the permissions of the victim, who can be
anybody that has access to his profile.

In WebGoat, there are two kinds of authorization goals:

• Business layer access control: A user U can do a limited set of actions
according to which roles he belongs to.

• Data layer access control: a confidential data D is accessible only by a
user U that belongs to a set of authorized users for D.

2.1.3 Confidentiality

In most of WebGoat lessons, the purpose of the attacker is to find a way
to view confidential data. The ways to achieve this are extremely copious
and diverse: bypassing the authentication request, sniffing user credentials
or stealing a user session, injecting (SQL or JavaScript) code to lead either
the server or the user to reveal confidential data. However, the security goal
is always the same: a confidential data D must remain secret between a set

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 8/62

of authorized users. In other words, if a user U access a confidential data D,
then U must belong to the set of authorized users for D.

2.1.4 Integrity

Certain values must not be altered in an unintended/unauthorized way. For
example, assume that a certain condition depends on the value of some pa-
rameter x, and that if a test performed with a certain value x passes, a
particular action, which depends on x, is executed. Then, it should not be
possible for an attacker to change the value of x between the test and the
action execution. This notion of atomicity is crucial in Web applications and
its violation can lead, for example, to race condition flaws.

2.2 SAML 2.0 SSO security goals
The protocol participants are a user using a web browser (C), a service
provider (SP), and an identity provider (IdP).

Authentication Authentication involves C and SP. In general, we de-
fine that X authenticates Y on Z iff at the end of the protocol run X believes
it has been talking with Y and they agree on the value of Z. In this specific
case, we define a mutual authentication security goal:

• Client authentication: SP authenticates C on the URI of the resource
C wants to access to.

• Service provider authentication: C authenticates SP on the resource C
asked for.

We would like to check whether SAML SSO ensures that if C accesses
to a SP’s resource within a user session represented by a token sid (e.g. an
HTTP cookie), then an IdP issued an assertion for C to SP for the same sid
and sid is still valid.

Confidentiality We distinguish between two kinds of confidentiality
goals:

• Confidentiality of resource: The resource provided by SP to C at the
end of the protocol run must be kept secret between the two entities;
the address of the resource must be kept secret among C, SP, and IdP.

• Confidentiality of Authentication data, namely authentication requests
and assertions.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 9/62

Integrity It must be granted both on the resource provided by SP and
on assertion request/response. Regarding the first case, when C asks for a
resource, it should not be possible to change the obtained resource without
C being able to notice this change. Similarly, assertions must be checked
against modifications that can occur during the exchange of requests/re-
sponses between the involved entities.

2.3 OpenID security goals
The protocol participants are a user using a web browser (C), a relying party
(RP) and the OpenID identity provider (OP).

Authentication OpenID has to guarantee mutual authentication between
C and RP. Mutual authentication is defined as the conjunction of the follow-
ing two authentication goals:

• Client authentication: a relying party RP authenticates a user C on a
resource available at the address URI.

• Relying party authentication: a user C authenticates a relying party
RP on the resource RP sends to C.

Confidentiality OpenID comprises three instances of confidentiality prop-
erties:

• Confidentiality of resource: the resource provided by RP to C must be
kept secret between the two of them.

• Confidentiality of authentication data: the authentication requests and
assertions must be kept secret between protocol participants.

Authorization When an OpenID run ends, RP establishes a local session
lid with C. The authorization goal is defined as follows: whenever a user C
accesses a resource r available at RP’s site using a local session, it happened
in the past that C’s OP issued an assertion a for C to access RP, a caused
lid and lid is a valid session cookie of C.

2.4 OAuth 2.0 security goals
OAuth2 security goals are distinguished between the Authorization Code
Flow (ACF) and Implicit Flow (IF); see SPaCIoS Deliverable D.5.1 [10].

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 10/62

Authentication Authentication regards two protocol principals. They are
the Client (C) and the Resource Owner (RO).

• Client authentication in ACF. The Authorization Server EndPoint, re-
ferred to as AS_AEP, authenticates the Client C through its full cre-
dentials (client identifier and client secret) and they agree on the values
of the exchanged values of authorization code.

• Client authentication in IF. AS authenticates C on its partial creden-
tials (on the client identifier only) and they agree on the value of the
exchanged access token.

• Resource Owner’s authentication in ACF and IF. The RO must be
authenticated by the AS_AEP during the protocol run through RO’s
credentials.

Authorization OAuth authorizes C to access some protected resources,
owned by RO, by providing an access token to C. It is fundamental to verify
that if C is granted access to a protected resource through an access token,
then an Authorization Server has previously issued that token to C, after
having received the access grant from RO.

Confidentiality Confidentiality is related to different values:

• Tokens and authorization codes. Authorization code must be kept se-
cret between AS, UA and C, while access and refresh token must be
kept secret between the AS and C during the protocol run (only ACF).

• Client credentials. In ACF, Credentials must be kept confidential by
the client and shared exclusively with the AS on a secure channel.

• Resource Owner credentials. They must be shared only with the AS
(in both flows).

Integrity Access tokens, refresh tokens and authorization codes delivered
by the Authorization Server endpoints (i.e., AS_AEP and AS_TEP respec-
tively for the access code endpoint and the token endpoint) must reach the
destination client without being tampered. The integrity of code and tokens
is related with authentication goals, since the violation of integrity would
take to the impossibility to authenticate participants.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 11/62

2.5 Pervasive Retail security goals
At the security protocol level, the following security goals are expected in
the Pervasive Retail Platform:

• Mutual Authentication. The Pervasive Retail Platform shall have mu-
tual authentication with Consumer Client, Retailer Client, and Prod-
uct Provider Client. During the message passing process, channels with
confidentiality and integrity properties are used.

• Secrecy. In the Individual Offer scene, the offer provided by the Per-
vasive Retail Platform shall be a secret between the platform and the
consumer, unless it is exposed by the consumer to the retailer. In the
coupon scene, the coupon made by Product Provider to the consumer
through the Pervasive Retail Platform shall be also a secret, unless it
is exposed by the consumer to the retailer.

• Non-repudiation. In the individual offer scene, the retailer shall not
deny the offer made for the consumer. There is another case of non-
repudiation in the Pervasive Retail application scenario. When con-
sumer receives a coupon from Product Provider, Product Provider can-
not deny it has issued the coupon. In addition to this, since there is a
trust relationship (e.g., established by some agreement, between Prod-
uct Provider and Retailer), Retailer will accept the coupon presented
by the consumer.

At the business process level, the following security goals are expected in
the Pervasive Retail Platform:

• Authorization. All the data access shall be controlled by authorization.
For example, the purchasing behavior information, e.g., the relation-
ship between the purchasing decision and the coupon, is accessible for
Product Provider. At the same time, the exact selling price information
in purchasing behavior is not accessible for Product Provider.

• Privacy. In the coupon scene, the consumer can decide whether to
expose his/her location information to the Pervasive Retail Platform
and Product Provider.

• Need-to-Know. In the coupon scene, consumer identity information
such as name and gender is not necessary for the Product Provider to
make a decision about coupon, so it shall not be sent to and known by
the Product Provider.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 12/62

2.6 eHealth security goals
Since storage and communication of data in an EHR contains sensitive per-
sonally identifiable information (PII) within patient data, specific security
goals have to be considered for every function.

The eHealth Record scenario can be characterized by several security
requirements like Privacy, Confidentiality, and Authenticity of Electronic
Health Records (EHRs). In order to be considered compliant to these re-
quirements, the abstract model must meet a set of security properties. Sub-
sequently, those properties will be also tested in the real system by means of
test cases.

Although there are no complete models of the EHR case studies at this
time, it is nevertheless possible to define a list of relevant goals that any such
model should meet.

At a high level, the security requirements for health records and systems
are: the confidentiality of patient data must be enforced, the authenticity
and integrity of EHRs must be secured, and the system and processes must
be reliable and available. Moreover, special scenarios, like the user consent
to forward information to other parties must be supported. In more detail,
our goals are:

• Confidentiality: In general, both sensitive medical data transmitted
over the network and data stored should be confidential. In particular,
patient data should be confidential against third parties unless specific
patient-consent is given. This is also the case when, for a second opin-
ion, a further medical practitioner obtains access to the EHRs of the
patient (except in emergency or in the case of statutory exemptions).
Moreover, Patient records must be protected from eavesdropping dur-
ing communication and this usually implies that communication must
be encrypted. Additionally, EHRs should be protected at rest, when
stored on servers, on devices or on clients.
Particularly in the case of eHealth mash-ups, there is a need for special
care in order to achieve this goal: since different applications work on
the same data space, it is important that the separation techniques in
place do enforce, as expected, that the applications cannot access the
data of other applications, outside of the defined interfaces.

• Privacy: In addition to the more general goal of confidentiality, we plan
to consider the following specific and stronger privacy goals. Although
it is not clear whether we will be able to fully model all of them in
ASLan++, we want to have a diverse collection of goals as a starting
point for future formalization efforts.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 13/62

1. User Choice and Consent: In our case, the patient has the choice
to approve that some of his medical personal information is being
sent to another party for a particular purpose, like a second opin-
ion or for research purposes. Additionally, the patient can allow
monitoring devices (or other medical equipment) to autonomously
add information to his records for a limited period of time. The
required authorization, to be provided by the patient, is called
Patient Consent. The corresponding goal can be expressed with
an LTL goal, using the “Globally” operator ([] in ASLan++),
having implemented in the model suitable access control policies
via Horn clauses and dynamic facts, or directly coding the policy
as conditions (guards) in ASLan++.

2. Notification: the patient has to be informed about access events
to his Electronic Health Records (EHRs). This is a functional goal
that is likely to be abstracted in ASLan++, or can be represented
as a future-time LTL formula (“always, after some event, eventu-
ally, or in a given number of steps, something happens, namely,
the patient is notified”).

3. Data Retention: a doctor that provides a second opinion in a
particular case should, of course, be able to read the pertinent
EHRs, but should not keep a copy of them after giving his opinion.
Additionally it must be ensured that patient information is kept
only as long as necessary. This goal has more of a ‘usage-control’
nature, and is therefore more challenging to be modeled. This goal
can probably be abstracted in ASLan++, or can be represented as
a future-time LTL formula (“always, after the second opinion has
been given, eventually, or in a given number of steps, something
happens, namely, the copy is deleted”).

Other privacy properties like Purpose of Use (the user is informed about
the intended usage of his data, and the data is used only for such pur-
poses) and Data Quality (the user is able to correct any incorrect infor-
mation in his data), as well as those related to Procedures, Training,
Awareness and Standard of Conduct, Incident Management, Auditing
and Enforcement are out of the scope of our investigation (mainly be-
cause they lie on a business-process level of abstraction and not in the
software level, that is the main scope of this project).

• Authenticity of EHRs: It must be verified that the EHRs have been
created by the claimed Person at the claimed time (this information is

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 14/62

included in the EHR itself) and using the procedures, methods, work-
flows and systems approved for such purposes. As for other authenticity
goals, this is typically represented by an LTL formula.

• Integrity of EHRs: Data stored in the EHR must remain complete and
unaltered unless update operations are performed by authorized users.
Their logic (workflows and processes) should also be maintained. As
for other authenticity goals, this is typically represented by an LTL
formula. Usually this goal is subsumed to authenticity (that is, when
one proves that the data has been created by the claimed person, at
the same time it is also verified that it has not been manipulated since
then).

• Accountability: In the case of eHealth, every access to an EHR must
be logged. This is particularly important when a medical practitioner
accesses an EHR with relaxed access control policies in the case of
emergency. The special provisions for logging activities take place can
be expressed through an LTL goal. It may be sufficient to check that if
an emergency occurs (implying relaxed access policies to a record), then
extra logging activities must be performed (this may be represented by
a special fact), and this can be modeled with an LTL goal. In addition,
each time an access occurs, a log entry is also immediately created.

2.6.1 Tentative formalization

As mentioned above, currently we do not have a complete formalization of
the eHealth problem case. Therefore, in the following we give a tentative
formalization of the goals mentioned above. For the time being, we therefore
ignore the fact that a formalization of goals requires a formal model of the
problem case. The following tentative formalization nonetheless shows that
the security goals of the eHealth problem case can be specified in LTL, hence
expressible in ASLan++.

We will use a key to identify and access the EHR, and the following
predicates and constructor functions will be used in modeling the desired
security properties:

• ehr(patient, key): the EHR of patient, referenced by the key (or index)
key.

• isdoctor(anyone): the entity anyone is a doctor.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 15/62

• stores(anyone, ehr(patient, key)): the entity anyone (typically, a doc-
tor or a nurse, but in some cases it can be also a device) creates the
EHR of a patient and and stores it in the system.

• access(anyone, ehr(patient, key)): the entity anyone (typically, a doc-
tor or a nurse) accesses the EHR of a patient with key key.

• witness(anyone, key, ehr(patient, key)): this event is used only for
modelling purposes, in order to be able to verify (in the model) the
authenticity of an EHR. For the use of the logical predicate witness,
see also [3]. The event is generated when a health-care professional or
administrative person, or a device (anyone) creates (“issues”) an EHR,
as part of his normal workflow. Thus, the event is generated when
an authorized entity creates an EHR in the ways that they should be
created. This is not the case if the attacker directly creates an EHR or
induces another entity to create one. Moreover, the EHR ehr(patient,
key) in the witness event is correctly signed by the entity anyone at
the moment of creation.

• consent(patient, anyone, key): patient’s consent for a doctor, a nurse,
a health-care administrator or even a device to access his/her EHR
identified with key key. This also includes the authorization of creating
a new EHR. When a patient is registered in a hospital, automatically he
gives consent to selected personnel of the hospital to access his EHRs
as long as he is in the hospital. To authorize further personnel or
devices an explicit extra consent of the patient is required (except for
emergency situations).

• timeout(patient, anyone, key): a timeout, that limits the amount of
time a doctor or a device may access an EHR after a patient has con-
sented the access. We assume that the event of providing a patient
consent implicitly creates a timeout that will fire in the future, limiting
the validity of the consent. This is modeled as a fact, rather than a
real time event.

• emergency(patient, doctor): state of emergency for a patient, issued
by a doctor. During the emergency, the doctor is permitted to access
the EHRs of the patient. For modelling purposes, it is easier to assume
that emergency is not a state of the system (the system does not track
any emergency situation of a patient) but it is a reason or purpose to
access the EHR. Thus a doctor may enter the reason “emergency” to
access the EHR. With this view in mind, emergency(patient, doctor)
and access(anyone, ehr(patient, key)) happen simultaneously.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 16/62

• notification(patient, doctor, key): a patient is notified that a doctor
has accessed his/her EHR with key key.

• logged(doctor, ehr(patient, key)): the event of logging a doctor’s access
to an EHR.

Instead of requiring that if a doctor knows an EHR, he has permission
to know it, we should require that in the moment he accessed it he had the
corresponding permissions. The reason is that the conditions to access a
certain EHR may cease to be true, while the fact that an agent knows a fact
is monotone (if true, remains true forever). Thus, a doctor may access an
EHR in an emergency situation, and after the emergency has been resolved,
the doctor can not access any more the EHR of the patient, but of course he
may still know the EHRs of the patient that he access during the emergency.
Thus, our security conditions do not talk about a person knowing but rather
accessing (or creating) an EHR.

The main security goals can be written as:

• ∀anyone, patient, key (�(access(anyone, ehr(patient, key)))
=⇒ (¬timeout(patient, anyone, key) S consent(patient, anyone, key))
∨ (emergency(patient, anyone)))

• ∀anyone, patient, key (�(stores(anyone, ehr(patient, key)))
=⇒ (¬timeout(patient, anyone, key) S consent(patient, anyone, key))
∨ (emergency(patient, anyone)))

• ∀anyone, patient (�(emergency(patient, anyone))
=⇒ isdoctor(anyone)))

• ∀anyone, patient, key (�(access(anyone, ehr(patient, key)))
=⇒ 3notification(patient, anyone)))

• ∀anyone, patient, key (�(access(anyone, ehr(patient, key)))
=⇒ 3−1 ∃y witness(y, key, ehr(patient, key))))
This is an authenticity check: if someone accesses an EHR, it is indeed
authentic.

• ∀anyone, patient, key (�(access(anyone, ehr(patient, key)))
=⇒ logged(anyone, ehr(patient, key)))))

Notice the difference between access and the usual “knows” predicate
(that we do not explicitly use here, except for the attacker) and also the
difference between stores and witness. Both “access” and “stores” are system
events that happen in discrete moments of time. They are not predicates that

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 17/62

are true in intervals of time, while “knows” is a predicate that is true in an
interval of time. In fact, the predicate is monotone: If an agent accesses a
data, then the agent knows the data thereafter. (Note that information may
be inferred without being directly accessed. For instance, a piece of data may
be “known” if it is the concatenation of several pieces that are known, or if
it is the result of applying a public function to known data.) Contrary to
“stores” which is a system event (one that happens, not only in the model,
but also in the real system), “witness” is a logical or virtual event, used only
for modelling purposes: whenever an authenticated and authorized entity,
anyone, creates an EHR for patient, with a given key, as part of his normal
workflow, the event witness(anyone, key, ehr(patient, key)) is modeled to
recall (“witness”) the fact of this creation.

2.7 Infobase security goals
We have considered several security goals concerning the confidentiality and
the integrity of sensible data, and authorization constraints that has to be
met by the Infobase application scenario. In this section we will provide the
reader with an informal description of every goals that we formalized in the
specification(s) of this scenario, while details about their formalization are
described in Section 3.

Confidentiality For the design time analysis we want to consider confi-
dentiality at two different levels. The first one is the channel level where
confidentiality of data is guaranteed by the use of secure (*->*) or confiden-
tial (->*) channel. But this is not enough to ensure that confidentiality of
data holds, because channel confidentiality does not implies that the end-
points of the communication are trusted, and even if they were trusted, we
do not know if all channels that a particular data will go through will be con-
fidential. So our aim is to check that some particular data are confidential in
the overall system. Indeed, even if those data could be considered confiden-
tial in the model, we also want to consider confidentiality at provision and
consumption time analysis, i.e., at the implementation level. In other words,
in order to check confidentiality of data while probing the real system we have
to consider confidentiality goal at model level even if confidentiality is given
by the usage of secure channels. This allows us to use the model to generate
abstract test cases violating confidentiality and thus probe the real system,
after a concretization step (see [11] for details on the correspondence between
abstract and concrete test cases), and check if it satisfies confidentiality.

In details, we want to check confidentiality with respect to the following
data:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 18/62

• Confidentiality of authentication data (passwords): the first phase of
the model is the authentication of the Client entity. In this phase, the
Client sends to the Repository entity the credential data (namely
username and password). We checks if the password sent to the Repo-
sitory is confidential, using in-line secrecy goals along the lines of [2].

• Confidentiality of contents stored in the repository: all data stored into
the repository by a user must be confidential, unless the user has ex-
plicitly allowed others to access his data or in the case the content is
stored as public to anyone who has access to the repository.

• Confidentiality of cookies: in the Infobase scenario, users log in the
system and receive a cookie which allows them to access the repository
and to issue requests to the system. The cookie must be confidential
otherwise an intruder could be able to reuse it in order to obtain in-
formation he is not eligible to access. As for passwords, this goal has
been modeled using in-line goals.

• Confidentiality of responses from the Repository: in order to be sure
that the intruder is not able to get any information from the Repository
entity, we have modeled an authorization goal, authorization_disho-
nest, which entails also a check on the confidentiality of answers that
a user could receive from the Repository. With authorization_dis-
honest we indeed checks that whenever the intruder knows a particular
response message he has to be a legitimate user of the system with the
appropriate rights to see the response, i.e., the intruder is also a user of
the system who can issue the request that caused the response message
from the Repository. This goal partially encompass the goal about
confidentiality of stored data, because some responses from the reposi-
tory contains data stored in the system, but this is not always the case.
Indeed, by accessing to a response from the repository he is not allowed
to see, an intruder could learn some other sensible information which
could be reused to attack the system, e.g., a list of content present in
a repository.

Integrity Similar to confidentiality, the use of *->* and *-> guarantees
the authentication and the integrity of messages at channel level [2], but we
want to check it in the overall system as for confidentiality (cf. Section 2.7).

In particular, we considered the integrity of request messages sent by
users to the Repository entity. This goal allows us to check and detect if an
intruder is able to modify a request generated by a legitimate user in order to
issue requests circumventing authentication and authorization mechanisms.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 19/62

Authorization Only legitimate users with suitable permissions can issue
requests to the Repository (e.g., deletion of files). More precisely, whenever
a request is performed by the Repository entity, a user assigned to a role
with sufficient permission to issue the request must have created and issued
it. We considered also the case in which the attacker is inside the system
(i.e., the intruder is also a user of the system) and has the rights to issue
certain requests. The authorization_dishonest goal cover this particular
scenario.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 20/62

3 Formalizing and verifying the security goals

3.1 WebGoat
3.1.1 Authenticity

Log in is done over a confidential channel using a secret password shared
between the user and the server:
Actor ->* S : login(Actor , secret_pwd :(password (Actor ,S)));
goals

secret_pwd :(_) {U,S};

3.1.2 Authorization

Several authorization goals are formalized in WebGoat.

Goal extracted from the “Bypass Data Layer” lesson. Roles are
defined as Horn clauses. For example, the isAuthorizedToView role is defined
as follows:
symbols

% for implicit use
isAuthorizedToView (agent , agent): fact;
% for explicit use
isAuthorizedToVisit (agent , agent): fact;
hasProfile (agent , profile): fact;

clauses
isAuthorizedToViewOwnProfile (A,P):
A-> isAuthorizedToView (A) :- A-> hasProfile (P);
isAuthorizedToViewBProfile (A,B):
A-> isAuthorizedToView (B) :- A-> isAuthorizedToVisit (B);

Profiles can be viewed by authorized users only:
goals

secret_profiles :
forall A P.

[](iknows (P) & A-> hasProfile (P) =>
i-> isAuthorizedToView (A));

This goal is translated as an attack state, which is easier to check by a
model-checker.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 21/62

Goal extracted from the “Bypass Business Layer” lesson. Profiles
can be deleted by authorized users only: To specify the security goal we make
use of three different facts:

• U->hasDeleted(P) is true whenever the user U has deleted the profile P.
This fact is issued whenever the server processes a message to delete a
profile.

• A->hasProfile(P) expresses that P is the profile of user U.

• U->isAuthorizedToDelete(A) states that user U is authorized to delete
A’s profile.

goals
deleted_profiles :
forall U A P. [](U-> hasDeleted (P) & A-> hasProfile (P)

=> U-> isAuthorizedToDelete (A));

Finally the authorization goal expresses that whenever a user U deletes user
A’s profile, then user U must be authorized to do so. This goal is also trans-
lated as an attack state.

Goal extracted from the “stored XSS” lesson. For the “stored XSS”
lesson we describe several approaches how to model the security goals. We
start from a simple goal and discuss its issues and how they can be addressed.
Then, we present a more complex formalization.

The viewing and editing actions that are non-correctly sanitizing their
data are tagged (with nonSanitizing action facts) in the model. In addition
we make use of Horn clauses to specify events where malicious code is injected
into a user profile. Using these two artifacts we describe the simple “stored
XSS” security goal as follows:
goals

storedXSS_on_profiles :
forall A B P.

[]((nonSanitizedReceivedBy (P,A) & (A != B))
=> [-](! codeInjectedBy (P,B)));

The goal expresses that whenever a user A has received a profile P with
a non-correctly sanitizing action, any other user B must not have injected
malicious code into the same profile P in the past. This formula introduces
some problems. One issue is that the past operator [-] is not handled cor-
rectly by the back-ends. A second issue is that this security goal is not sound
at the theory level and may output false positives. Before we move on to

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 22/62

a more complex security goal to address the second issue, we first address
the issue with the past LTL operator. We show how the given formula can
be rewritten so that the back-ends can deal with it. To deal with the past
operator, we experimented with two different approaches:

1. Using assert statements.

2. Introducing timestamps.

We insert assert statements after each actions that view a profile to handle
the ordering of view and edit actions. The assert statement says that it must
not happen that we view a malicious profile with a non-correctly sanitizing
view action. A non-correctly sanitizing view action is tagged with the fact
nonSanitizingViewingAction, and the Horn clause codeInjectedBy is true for
a malicious profile. A profile is malicious if it was edited by a dishonest user
with a non-correctly sanitizing edit action. These two concepts are expresses
as follows:

clauses
codeInjection (P,U,A):

codeInjectedBy (P, U) :-
editedByWith (P,U,A) &
nonSanitizingEditingAction (A) &
dishonest (U);

codeAlreadyInjected (P,U):
codeInjectedBy (P, U) :- maliciousProfile (P);

codeReception (P,U,A):
nonSanitizedViewedWith (P,A) :-

nonSanitizingViewingAction (A) &
codeInjectedBy (P, U);

At the same time a fact is issued after each action that edits a profile,
expressing that the profile Profile was edited by user U with the action
editProfileAction.

editedByWith (Profile ,U, editProfileAction);

Finally the following assert statement is used after each view action in
the model:

assert nonMaliciousProfile :
! nonSanitizedViewedWith (Profile , viewProfileAction);

Doing so, we check for each view-profile request if some malicious code
was injected into this profile in the past. Code was injected in the past if the

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 23/62

corresponding facts are set. A drawback of this approach is that the modeler
has to be aware where assert statements have to be inserted into the model,
and the security goal has to be replicated for each view action instead of
being expressed once in the dedicated goal section.

Another approach to deal with the past LTL operator is to introduce
timestamps. We introduce logical timestamps for every request and response.
Whenever the server receives a request or sends a response, it sets a corre-
sponding fact which includes the counter. The counter is increased for every
processed request or response. The Horn clauses and facts only need to be
chanced slightly to include variables T1, T2 of type nat:

clauses
codeInjection (P,U,A,T1 ,T2):

codeInjectedBy (P,U,T1) :-
editedByWith (P,U,A,T2) &
nonSanitizingEditingAction (A) &
dishonest (U) &
isStrictlyGreater (T1 ,T2);

codeAlreadyInjected (P,U,T1):
codeInjectedBy (P,U,T1) :- maliciousProfile (P);

codeReception (P,U,A,T1):
nonSanitizedReceivedBy (P,U,A,T1) :-

receivedByWith (P,U,A,T1) &
nonSanitizingViewingAction (A);

symbols
editedByWith (Profile ,U, editProfileAction ,T1);

Finally we rewrite the first security goal (with the past LTL operator) as
follows:
storedXSS :

forall A B P.
forall U1 U2 A P T1 T2.

[]((
nonSanitizedReceivedBy (P,U1 ,A,T1) & (U1!=U2)) =>
(! codeInjectedBy (P,U2 ,T2)));

What remains are false positives. To deal with this issue we have to
provide further restrictions on the profile and edit-actions. Initially a profile
may already contain malicious code. In addition we have to address the fact
that several edit-actions may be performed. After identified these additional
requirements, we introduce the following symbols and Horn clauses:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 24/62

symbols
receivedByWith (profile , agent , action , nat): fact;
editedByWith (profile , agent , action , nat): fact;
nonSanitizingEditingAction (action): fact;
nonSanitizingViewingAction (action): fact;
maliciousProfile (profile): fact;

clauses
codeInjection (P,U,A,C):

codeInjectedBy (P, U, C) :- editedByWith (P,U,A,C) &
nonSanitizingEditingAction (A) & dishonest (U);

codeReception (P,U,A,C):
nonSanitizedReceivedBy (P, U,C) :-

receivedByWith (P,U,A,C) &
nonSanitizingViewingAction (A);

codeAlreadyInjected (P,U, C):
codeInjectedBy (P, U, C) :- maliciousProfile (P);

Using these definitions, and the intuitive semantic for isStrictlyGreater,
we can formulate the security goal as follows: (A,B,C are agents, P is of type
Profile, Act of type action, and C1, C2, C3 are timestamps of type nat)
goals

forall A B C P Act C1 C2 C3. [](
!(codeInjectedBy (P,B,C1) &
nonSanitizedReceivedBy (P,A,C3) & (A != B) &
(!(isStrictlyGreater (C3 ,C2) &
isStrictlyGreater (C2 ,C1) & editedByWith (P,C,Act ,C2) &
(! nonSanitizingEditingAction (Act)))))
);

This security goal states the following: Under the assumption that a
profile contains malicious code, if this profile is viewed by a non-correctly
sanitizing view-action, a correctly sanitizing edit-action must have happened
in between.

This formalization of security goal does not make use of special LTL
operators but uses timestamps. In addition it solves the issue with false
positives. The drawback of this formalization is that we observe a state
explosion so that the back-ends do not report a result.

Goal extracted from the “reflected XSS” lesson. Finally we consider
a lesson about reflected XSS. Because several different forms of reflected XSS

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 25/62

lessons exist and because they all have an influence on how they are modeled,
we consider here the form-based reflected XSS. Form-based means that the
user inputs the malicious code into a form that is then returned with the next
response. The concrete lesson we model is a search engine for user profiles.
The web application provides an input field where a search query is entered.
After the server processed the query, it returns the result that includes the
original query.

To formalize the security goal we use the following facts in the model to
state that a response was received from the server:

receivedResponse (action): fact;
originsFromForm (action): fact;

where the parameter of the receivedResponse fact specifies the request
(e.g., searchProfileAction, loginAction) this response belongs to. The
second fact is used to tag actions that potentially contain user input data.
These requests are tagged with the fact originsFromForm.

Together with previously introduced facts, we formalize the security goal
for reflected XSS as follows:
goals

reflectedXSS :
forall Request . [](

(receivedResponse (Request) & originsFromForm (Request))
=>
((! nonSanitizingAction (Request)) |
(! nonSanitizingResponse (Request))
));

The security goal expresses that whenever a response of a request is re-
ceived, and this request contains user input data, then either the request
itself or the corresponding response has to be a correctly-sanitizing action.

3.1.3 Confidentiality

See examples for secret password in Section Authenticity (secret_pwd goal)
and for secret profiles in Section Authorization (secret_profiles goal).

3.1.4 Integrity

A profile must remain sanitized otherwise a user that accesses this profile
could be victim of a XSS attack:
goals

forall P.
[](received (P) => SanitizedProfiles -> contains (P));

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 26/62

Model-Checker (Time in second)
Lesson Model CL-AtSe SATMC
RBAC 1 secure 3 (0.04) 3 (0.03)

mutated 8 (0.02) 8 (0.06)
RBAC 3 secure 3 (0.10) 3 (3.00)

mutated 8 (0.02) 8 (1.00)
reflected XSS secure 3 (0.35) 3 (189)

mutated 8 (0.04) 8 (0.44)
stored XSS mutated goal v1 ? (0.01) - (600)

mutated goal v2 8 (0.02) 8 (1.00)
mutated goal v3 8 (2.50) - (600)
mutated goal v4 8 (52) - (600)

- timeout ? inconclusive 8 attack found 3 no attack found

Table 1: Results of checking WebGoat security goals with each backend

3.1.5 Verification of Goals

Table 1 summarizes the results of checking the security goals with both
CL-AtSe and SATMC model-checkers. CL-AtSe is run with the options
--lvl 0 --not_hc for the models of RBAC 1 and RBAC 3 lessons and with
the options --lvl 0 --nb 2 for the reflected and stored XSS lessons. The
option --lvl 0 prevents CL-AtSe for rebuilding the protocol (which fails
for our models translated by the current version of the ASLan++ transla-
tor); the option --not_hc activates the support for negative constraints in
Horn clauses; and the option --nb 2 increases by 1 the maximum number
of role/loop iterations. SATMC is run without any additional option. For
the stored XSS lesson, the original security goal (v1) makes use of past LTL
operator and causes some trouble to the backends. Either the model-checker
does not support LTL formula (CL-AtSe) or it does not terminate in less
than 10 minutes (SATMC). This goal has been rewritten in three other dif-
ferent versions such that it can be translated as an attack state. SATMC
(v3.4) is able to find an attack trace in the second version only, which uses
an assertion. However, CL-AtSe reports an attack for all the three rewritten
versions.

3.2 SAML-SSO
In this section, we describe the formalization of the security goals of SAML,
starting from the informal description given in Section 2.2. All these goals

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 27/62

have been translated into attack state instead of LTL goals because Satmc can
handle more than one attack states goals but just one LTL. The validation
of these goals has returned an INCONCLUSIVE response that means that with
a fixed depth (tested up to 22) no attack has been found. We have also used
OFMC in order to validate the specification and the final result has been
NO_ATTACK_FOUND. The model is given in Appendix C

3.2.1 Client Authentication

In order to check Client Authentication we have modeled the channel goal
SP_authn_C_on_uri. The Client entity sends the following message to the SP
entity:
Actor -Ch_C2SP_1 -> SP :

httpRequest (get , URI ,
nil_http_element , nil_http_element);

Given that the Service Provider (SP) has to authenticates the client on a
URI, in the Client entity we have used C_on_uri:
Actor -Ch_C2SP_1 -> SP :

httpRequest (get , SP_authn_C_on_uri :(URI),
nil_http_element , nil_http_element);

Then at the end of the SP entity, SP_authn_C_on_uri refer to the security
goals that must be met and may not be violated:
SP_authn_C_on_uri :(URI) := URI;

The channel goal SP_authn_C_on_uri checks that SP authenticates Client:
SP_authn_C_on_uri :(_) C *-> SP;

3.2.2 Service Provider Authentication

In order to check Service Provider Authentication we have modeled the chan-
nel goal SP_on_resource.
SP_on_resource :(_) SP *-> C;

The SP entity sends the following message to the SP entity:
Actor -Ch_SP2C_2 -> C :

httpResponse (code_200 , nil_agent ,
nil_http_element , SP_on_resource :(Resource));

And the Client entity receives it catching the Resource value.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 28/62

AnySP -Ch_SP2C_2 -> Actor :
httpResponse (code_200 , nil_agent ,
nil_http_element , SP_on_resource :(? Resource));

3.2.3 Confidentiality of Resource

We define the following goal:
SP_on_resource :(_) {SP ,C};

to check that the Resource is known by Security Provider and Client only.
Any time that Resource is used we label it with SP_on_resource:() in order
to check confidentiality of that. The SP entity sends the following message
to the Client entity:
Actor -Ch_SP2C_2 -> C :

httpResponse (code_200 , nil_agent ,
nil_http_element , SP_on_resource :(Resource));

And the Client entity receives it catching the Resource value.
AnySP -Ch_SP2C_2 -> Actor :

httpResponse (code_200 , nil_agent ,
nil_http_element , SP_on_resource :(? Resource));

3.2.4 Confidentiality of Authentication data

We define the following goal:
secret_auth :(_){SP ,C};

to check that the authnRequest and the signedAuthnResponse are known by
Security Provider and Client only. Any time that one of these facts is used
we label it with secret_auth:() in order to check confidentiality of that. The
Client entity sends the following message to the SP entity:
Actor -Ch_C2SP_2 -> AnySP : httpRequest (post , AnySP ,

nil_http_element , secret_auth :(ARsp));

Then the SP entity receives it:
C -Ch_C2SP_2 -> Actor : httpRequest (post , Actor ,

nil_http_element , secret_auth :(postBinding
(signedAuthnResponse (inv(pk(IdP)),
Actor , IdP , C, ID), URI)));

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 29/62

3.2.5 Integrity

The goal “Service Provider Authentication” implies integrity of Resource.
This is due to the fact that in order to check this authentication we check if
the channel is authenticated. As written in [1] if a message M is sent over an
authenticated channel *->, then the integrity of M is guaranteed.

3.3 OpenID
In this section we describe the formalization of the security goals of OpenID,
starting from the informal description given in Section 2.3. The LTL goal is
in another file because the translator cannot translate it in attack state and
SATMC can handle just one LTL formula. The validation of these goals has
returned an INCONCLUSIVE response with SATMC because after a few hours,
SATMC was still running. With Cl-Atse, we got a NO_ATTACK_FOUND result
after a few seconds.

3.3.1 Mutual authentication

In OpenID, the authentication is a mutual authentication between the client
C and a relying party RP.

The client sends the URI to the RP over an authentic and secure channel.
The same type of channel is used by the RP to send the resource to C.
Therefore C must be able to authenticate RP on the resource and the RP
authenticates C on the URI sent in the first message.

We need to create a channel goal for each of these authentications:
goals

RP_on_C :(_) RP *-> C ;
C_on_RP :(_) C *-> RP;

When the client sends the URI to RP in the first exchanged message, we
use the C_on_RP goal to check that the URI comes from the client:

Actor *->* RP: httpRequest (post , C_on_RP :(URI),
nil_http_element , userSupplID (Actor));

And when the client receives the resource at the end, we use the RP_on_C
goal to check that the resource comes from the relying party:

RP_on_C :(Resource) := Resource ;

We use the C_on_RP goal to check that the URI received by the RP
comes from the client:

C_on_RP :(URI) := URI;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 30/62

When the RP sends the resource to the client, we use the RP_on_C goal
to check that the resource comes from the RP.

Actor *->* AnyC: httpResponse (code_200 , nil_agent ,
nil_http_element , RP_on_C :(Resource));

3.3.2 Confidentiality

Resource
In OpenID, the resource is known only by the relying party, because RP is
the owner of the resource, and by an authenticated and authorized client.

Therefore, we can see the resource as a secret between the client and the
relying party.

In order the check that the resource is only known by RP and C, we can
define a secrecy goal “secret_data” between RP and C:
goals

secret_Data :(_) { RP , C };

Then, when the resource is exchanged, we use this secrecy goal. The
resource is sent from the RP:

AnyRP *->* Actor : httpResponse (code_200 , nil_agent ,
nil_http_element , secret_Data :(? Resource));

and it is received by the client:
secret_Data :(Resource) := fresh ();

Requests and assertions
OpenID protocol is based on authentication requests and authentication re-
sponses (or assertions) to know whether the resource can be sent to the client
or not. These messages contain critical data and they have to be known only
by the client, because he is between the relying party and the provider, by the
relying party because he will generate the authentication request and check
the authentication response, and by the provider because he will receive the
authentication request and generate the corresponding response. Therefore,
these messages have to be known only by these three entities.

In order to check this, we create a secrecy goal “secret_ReqAndAssert”
and we use it each time a request or response is sent or received by a partic-
ipant.

In the models, only secure channels are used by the three participants,
therefore this goal is “trivial”. But it should be defined as an explicit protocol
goal.

Definition of the goal:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 31/62

goals
secret_ReqAndAssert :(_) { RP , C, OP };

For example, when C receives the authentication request from the RP,
we check the secrecy goal:
RP *->* Actor : httpResponse (code_30x , ?OP ,
secret_ReqAndAssert :(? OIDAuthnRequest),
nil_http_element);

We check that the OpenID provider receives the authentication request
from C:
on(C *->* Actor : httpRequest (get , Actor ,
secret_ReqAndAssert :(oidAuthnRequest (
C, Actor , Handle , RP)), nil_http_element)): {
...
}

And finally we check that the relying party generates the authentication
request:
Actor *->* AnyC: httpResponse (code_30x , OP ,
secret_ReqAndAssert :(oidAuthnRequest (
C, OP , Handle , Actor)), nil_http_element);

3.3.3 Authorization

When a client accesses to the resource, the relying party generates and sends
to the client a local ID (it can be viewed as a session ID).
Now the client can access the resource directly (without dealing with authen-
tication requests and responses) using this local ID.
Therefore this local ID is a critical data and each time a client uses an ID,
RP has to be sure that:

• RP has generated this ID;

• this ID is only for the client C with provider P;

• RP already has a session for C and his provider P with ID.

In order to check that, we defined some predicates and an LTL formula:

• access (client, resource, rp): A client accesses the resource on relying
party rp.

• haveSession (client, rp, p, resource): A client with provider p has a
session on relying party rp for the resource.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 32/62

• isProvider (p, client): p is the provider of client

• caused (assertion, localID, resource): localID is caused by assertion
for a specified resource.

∀c, r, rp 2(access(c, r, rp) =>
3−1(∃p, a, lid(isProvider(p, c)∧caused(a, lid, r)∧haveSession(c, rp, p, lid))))

But, in ASLan++, the existential quantifier ∃ cannot be used. We need
to express it with the universal quantifier ∀ and change the formula. This is
the adapted formula in ASLan++:
goals

unauthorizedAccess :
forall C R RP. [](C-> access (R, RP) =>

[-] (! forall P A LID .(!P-> isProvider (C) |
! caused (A, LID , R) |
!C-> haveSession (RP , P, LID)))

);

3.4 OAuth 2.0
We formalize the security goals of OAuth pertinent to the ACF flow, for
which a formal model has be developed in SPaCIoS. From the security goals
described in section 2.4 “resource owner’s authentication” and “client au-
thentication in IF” are not applicable as they refer to the IF flow of the
OAuth protocol. We therefore focus on the “client authentication in ACF”
and “Authorization” goals here.

The verification results for these goals have been negative: the SATMC
model checker did not terminate on these goals. We expect this is due to the
complexity of the ACF flow model, not the complexity of the goals. We are
currently working on finding a suitable level of abstraction for this model.

In the following, we consider the “facebook” model which represents the
ACF flow of the OAuth protocol. The model is given in Appendix B.

3.4.1 Client Authentication

For “client authentication in ACF” we add the standard predicates “wit-
ness” and “running” to the specification of Facebook and Client respec-
tively. That is, in the Facebook code, right before Token:=fresh();, we add
witness(Actor,App_ClientID, Code,App_Secr). Similarly, in the Client
code we add running(FB,APP_ClientID,Code,App_Secr) right before the
line %Access Token.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 33/62

Then, the client authentication in ACF can be formalized as:
forall X Y Z W.[] ((witness (X, Y, Z, W)) =>

<-> (running (X, Y, Z, W)));

This corresponds to non-injective agreement in Lowe’s characterization
of authentication. If injective agreement is needed, then either the server
should check for uniqueness of “Code” during authentication, or nonce-based
challenge response can be used.

3.4.2 Authorization

For the “Authorization” goal, we add three predicates to the model:

• In Client: add has_token(Actor,APP_ClientID,Token) right before
the line %Accessing protected resources.

• in User: add agreed(Actor,FB,APP_ClientID) right after
Actor *->* FB: httpRequest(get,uri(FB,RED_URI),AzReq,... Here
APP_ClientID should be extracted from azReq.

• In Facebook: add issued(Actor,APP_ClientID,Token) right after
AccessTokens->add. . . .

Now, the Authorization property can be expressed as:
forall X Y Z.[]((has_token (X, Y, Z)) => exists A U.<->
(issued (A, Y, Z) \& <-> (agreed (U, A, Y))))

3.5 Pervasive Retail
In this section, we describe the formalization of the security goals of Pervasive
Retail, starting from the informal description given in Section 2.5.

For offer.aslan++, the result with SATMC is not conclusive because it was
still running after few minutes but with Cl-Atse, we got a NO_ATTACK_FOUND
result after less than one second.

For logon.aslan++, Cl-Atse result is INCONCLUSIVE because properties
and clauses have been ignored and there is a failure while reading aslan
file (Failure while reading : unknown signature for operator). SATMC result
is INCONCLUSIVE.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 34/62

3.5.1 Mutual authentication

The mutual authentication goal refers to the authentication between Perva-
sive Retail Platform and various clients (Consumer Client, Retailer Client,
and Product Provider Client). In the specification offer.aslan++, the entity
“Client” is the Consumer Client, all the other entities are components of
the Pervasive Retail Platform. The entity “Orchestrator” is the component
interacting directly with the Consumer Client.

All messages between the Client and the Orchestrator are exchanged over
secure channels.

In order to check that, we defined two channel goals, one to authenticate
the Client by the Orchestrator and another to authenticate the Orchestrator
by the Client:
goals

Orch_on_C :(_) Orchestrator *-> Client ;
C_on_Orch :(_) Client *-> Orchestrator ;

At the beginning, the client tries to create a session with the orchestrator
sending an application_key. Orchestrator has to be sure that the client sent
this session request:
Actor *->* Orchestrator :
create_session (C_on_Orch :(Application_Key));

Then, when the Orchestrator sends the offer to the client, the latter has
to be sure that the Orchestrator sent this offer:
Orchestrator *->* Actor :
Orch_on_C :(secret_Offer :(? Deal .? Price)) ;

We do the same verification for the Orchestrator:
Client *->* Actor : create_session (? Application_Key);
C_on_Orch :(Application_Key) := Application_Key ;
...
Actor *->* Client :
Orch_on_C :(secret_Offer :(Deal.Price)) ;

}

3.5.2 Secrecy

In this scenario, the offer sent by the Orchestrator is considered as critical
data and it has to be kept secret by the Client and the Orchestrator.

In order to check that, we defined a secrecy goal “secret_Offer” between
the Client and the Orchestrator:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 35/62

goals
secret_Offer :(_) { Orchestrator , Client };

Then, when the Client receives the offer, we check the secrecy:
Orchestrator *->* Actor :
Orch_on_C :(secret_Offer :(? Deal .? Price));

We do the same when the Orchestrator sends the offer to the Client:
Actor *->* Client :
Orch_on_C :(secret_Offer :(Deal.Price));

3.5.3 Non repudiation

In the offer scene, the retailer shall not deny the offer made for the consumer.
It means the offer is signed by the Orchestrator and we only need to check
that the offer comes from the Orchestrator and it has not been altered during
the transmission. This goal is already defined using a channel goal in the
mutual authentication.

In the coupon scene, if the ProviderClient provided a coupon, when the
RetailerClient checks the coupon, the result has to be 1. This can be checked
using a LTL formula and the following two predicates :
% ProviderClient provides a coupon
provide (agent , type_Of_Coupon) : fact;

% RetailerClient check a coupon
getResult (agent , type_Of_Coupon , nat) : fact;

The following formula checks whether the coupon has been provided be-
fore:
goals

nonrepudCoupon :
forall RC R PC C. [](

(RC -> getResult (C, R) & (R = 1)) =>
<-> (PC -> provide (C)));

3.5.4 Authorization

In Pervasive Retail, a role based access control mechanism is used to guaran-
tee that the information about purchasing decision and coupon is accessible
for product provider, but the price is only accessible for retailer.

In order to check this goal, we can use the following predicates and LTL
formulae.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 36/62

% An entity access to the decision
accessDecision (role) : fact;

% An entity access to the price
accessPrice (role) : fact;

Then, each time an entity accesses an information, we check its role:
goals

authorizedAccessDecision :
forall R. [](accessDecision (R) =>
(R = retailer | R = provider));

authorizedAccessPrice :
forall R. [](accessPrice (R) => (R = retailer));

3.5.5 Privacy

In the coupon scene, private information of client should never be sent out.
We can represent this information by a symbol location representing the
location of the consumer. Then, we can add a secrecy goal with the client
only.
secret_Privacy :(_) { Client } ;

And at the end of client entity, we check it:
secret_Privacy :(Location) := Location ;

3.5.6 Need to know

In the coupon scene, personal information which identify a person (name,
gender, address) in the consumer profile should not be known by the Provider-
Client. We can divide the consumer profile into two parts, Personally Identifi-
able Information (PII), and non Personally Identifiable Information (nonPII).
We can express this goal as a secret between Consumer and Orchestrator on
PII.
secret_NeedToKnow :(_) { Orchestrator , Consumer };

3.6 Infobase
In this section, we describe the formalization of the security goals of Infobase,
starting from the informal description given in Section 2.7. All these goals
have been translated into attack states instead of LTL goals because SATMC
can handle more than one attack states goals but just one LTL. The validation

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 37/62

of these goals has returned an INCONCLUSIVE response that means that with
the default depth of 80 steps no attack has been found and even if the depth
option is increased (tested up to 2000) SATMC still returns INCONCLUSIVE.
We have also validated the specification with CL-Atse that, as expected, has
returned NO_ATTACK_FOUND. The model is given in Appendix D.

3.6.1 Confidentiality of authentication data (passwords)

For the log in phase, the first message is sent from the Client entity to the
Repository:
%user sends user and pass to the LoginService
Actor ->* Repository :
Actor . UserName . secret_Password :(Password);

This message is sent using a confidential channel and includes: the name of
the User (Actor), the UserName and a secret Password. It is received by the
Repository entity but the check is not done in the receiving line but right
after:

on(? ->* Actor : ? UserIP .? UserName .? Password &
loginDB -> contains ((? UserName ,? Password ,? Role))): {

Password := secret_Password :(Password);

The last statement is reached only in the case the UserName and the Password
matches with an entry in the login database. This means that UserName is a
legitimate user of the system. For this reason, we want to be sure that his
password is secret. The UserIP variable in the received message should con-
tain the value of type agent corresponding to the IP address of the user, in-
deed, the Repository is using it for the following message exchanges with the
user. Even in the case the intruder sends correct UserIP.UserName.Password
to the Repository, the secrecy goal is violated because of the activation of
the secrecy_Password goal at the Client side. With secret_Password we
thus define the secrecy goal that aims to check if the Password is known by
Client (i.e. the user of the system) and Repository only.
secret_Password :(_) {UserIP , repository };

where repository is the agent name assigned to the Repository entity.

3.6.2 Confidentiality of content stored into the repository

Stored data is not part of the actual model yet. Fortunately, this goal is
subsumed by the goal checking if the response that the Repository entity
sends to the Client is confidential. The goal checks that an intruder who

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 38/62

knows response “R”, created by the repository, must be a legitimate user of
the system and must possess the permissions to issue the request that causes
the Repository to create response “R”. In order to do this we have added the
following goal:

authorization_dishonest : forall Req.
[](iknows (answerOn (Req)) =>

checkPermissions_dishonest (Req));

that subsumes the in-line secret_Answer(_) goal we could have used. This
goal is indeed more restrictive and allows us to check also for authoriza-
tion in the case of dishonest users (i.e. an intruder which is also a legiti-
mate user of the system that can issue certain requests to the system). The
checkPermissions_dishonest(Req) predicate is asserted by means of a Horn
Clauses:
permission (Us ,Pwd ,Ro ,Req):

checkPermissions (Us ,Req) :-
loginDB -> contains ((Us ,Pwd ,Ro)) &
Ro -> can_exec (Req);

permission_dishonest (Us ,Req):
checkPermissions_dishonest (Req) :-

dishonest_usr (Us) &
checkPermissions (Us ,Req);

Thanks to those two Clauses, every time a dishonest user, dishonest_usr(Us),
(i.e. an intruder) has permissions to issue some requests checkPermis-
sions(Us,Req);, the predicate checkPermissions_dishonest(Req) holds.
This allowed us to avoid existential quantification in the goal above which
would have required extra computation time from the model-checkers.

3.6.3 Confidentiality of cookies

This goal is modeled like the one for the passwords described in Section 3.6.1,
using:

secret_Cookie :(_) {UserIP , repository };

In the Client entity the secrecy goal is activated as soon as the cookie is
received by the user:
select { on (repository *->* Actor :

secret_Cookie :(? Cookie) &
? Cookie = cookie (UserName ,? ,?)): {} }

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 39/62

and in the Repository entity the goal is activated in conjunction with the
instantiation of the cookie variable:

Nonce := fresh ();
Cookie := secret_Cookie :(cookie (UserName ,Role ,Nonce));

3.6.4 Confidentiality of responses from the Repository

This is exactly the authorization_dishonest goal described in Section 3.6.2.

3.6.5 Authorization of requests

This goal is composed by two subgoals: authorization_dishonest and
authorization_honest. The former has been already described in Section 3.6.2,
the latter checks that only users having appropriate permissions can issue re-
quests to the Repository. This goal is modeled as follow: a user who receives
the response corresponding to a request must also have the necessary per-
mission to issue that request:
authorization_honest : forall Us Req.

[](Us ->got(answerOn (Req)) => checkPermissions (Us ,Req));

The Us->got(answerOn(Req)) predicate, a syntactic sugar for got(Us,an-
swerOn(Req), is asserted in the Client entity just after the user receives the
message answerOn(Req), and checkPermissions(Us,Req) is introduced by the
Horn Clause permission(Us,Pwd,Ro,Req) (cf. Section 3.6.2).

3.6.6 Integrity of requests

This goal is modeled with the request_integrity in-line goal:
request_integrity :(_) UserIP *-> repository ;

The goal is activated in the Client entity in conjunction with the shipping
of the cookie and the request to the Repository:
Actor *->* repository : Cookie . request_integrity :(Request);

In the Repository entity the goal is activated in the sending statement where
the response is sent to the Client:
Actor *->* UserIP : request_integrity :(Request). Answer ;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 40/62

4 Discussions
In this section, we first discuss how we transform the specification of a se-
curity goal when the goal refers to the events that are not observable in the
system under test. Then, we briefly explain the issue of testability in asyn-
chronous settings and also explain why this is not a concern in the context
of SPaCIoS.

4.1 Unobservable events
Let us start with a simple example that demonstrates the problem of un-
observable events in security goals. Take the following definition of the
authentication property which is based on Lowe’s notion of non-injective
agreement [7].

G∀(statesp(7, SP, [C, . . . , URI, . . .])⇒
∃O statec(2, C, [SP, . . . , URI, . . .])) (1)

stating that, if SP reaches the last step 7 believing to talk with C, who
requested URI, then sometime in the past C must have been in the state 2,
in which he requested URI to SP. Here, SP and C refer to the participants of
the SAML SSO protocol, examined in Sections 2.2 and 3.2 while stater is
an event of the form stater(j, a, [e1, . . . , ep]) meaning that a, playing role r,
is ready to execute the protocol step j, and [e1, . . . , ep], for p ≥ 0 is a list of
expressions representing the internal state of a. (See Table 2).

Since we aim at testing implementations using attack traces as test cases
with the purpose of detecting a violation of the authentication property, we
need to be sure that at the end of the execution of the attack trace, the
property has been really violated. Thus, we need to take into account the
testing scenario in terms of the observability of channels and of the internal
states of each principal. This can be done by defining a set of observable
facts. For instance, in case the tester can observe the messages passing
through a channel c then, for all rs, b, a, and m, the sent(rs, b, a,m, c) facts
are observable. Similarly, in case the tester can observe the internal state of
an agent a, then for all r, j, e1, . . ., en the stater(j, a, [e1, . . . , en]) facts are
observable.

Once defined the set of observable events according to the testing scenario,
we rewrite the formula using them. For instance, in the example above let
us suppose that the internal state of sp is not observable, while the channel
cSP2C that connects SP to C is observable. Then, we rewrite the property (1)
as follows:

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 41/62

Fact Meaning
stater(j, a, [e1, . . . , ep]) The agent a, playing role r, is ready to execute

the protocol step j, and [e1, . . . , ep], for p ≥ 0 is a
list of expressions representing the internal state
of a.

sent(rs, b, a,m, c) The agent rs, pretending to be b, sent the message
m to a on channel c.

Table 2: Facts and their informal meaning

G∀(sent(SP, SP, C, res(URI), cSP2C)⇒
∃O statec(2, C, [SP, . . . , URI, . . .])) (2)

where sent(SP, SP, C, res(URI), cSP2C) stands for SP pretending to be SP sends
to C a message res(URI) over the channel cSP2C. Here, res(URI) represents the
“resource” returned by SP when SP reaches the step 7 (see Table 2). When the
model does not satisfy the expected security property, a counterexample (i.e.
an attack trace) is generated and returned by the model checker. The attack
trace can be checked on the implementation; its executability, which shows
a violation of the authentication property (see Equation 2) is observable by
the tester. To summarize, in case a security goal refers to unobservable
events, the modeler must identify events in the specification that refer to
observable events, and then rewrite the property using observable events.
This transformation cannot in general be automated. However, we expect
that for a number of popular security goals one can automatically rewrite
the goals using observable events.

It is worth mentioning that the aforementioned solution is not general:
it is possible that the model checker generates (attack) traces containing
unobservable events, even when the goal is expressed using observable events
only. The aforementioned solution is a first-approximation: in our problem
cases we have successfully used this solution.

4.2 Testability in asynchronous settings
In synchronous settings, the tester observes the events in the same order as
they occur in the system under test (SUT). This need not be the case in
asynchronous settings; e.g., when the tester interacts with the SUT via asyn-
chronous channels. Asynchronous observations in general limit the “knowl-
edge” of the tester about the behaviors of the SUT. In the extreme cases,

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 42/62

properties that can be tested in synchronous settings may become untestable
in asynchronous ones. There are two situations where the tester and the SUT
are connected asynchronously.

• The SUT has multiple remote input/output ports, and the tester con-
sists of an observation point on each port. The observation points must
communicate in order to reach a consensus on the global behaviors of
the SUT; the consensus can be used to issue a pass/fail verdict for the
test case at hand. This problem has been studied in the literature; e.g.,
see [6, 5].

• The tester observes the SUT via an asynchronous “lens”, e.g. an asyn-
chronous channel. Then, if the tester observes event a followed by event
b, it cannot be sure whether in fact a has happened in the SUT before
b, or perhaps b has happened before a and the channel has reordered
the events. This problem has also been studied in the literature; e.g.,
see [4, 8].

In none of our problem cases we have identified SUTs with multiple remote
input/output ports, and also the communication between the SUT and the
tester can in our problem cases be assumed to be synchronous. Therefore,
the problem of testability in asynchronous settings is not a concern in the
context of SPaCIoS.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 43/62

5 Conclusion
In this deliverable, we have reported on our experiences with using ASLan++
to formalize the security goals of the SPaCIoS problem cases, and using the
AVANTSSAR platform for checking the goals.

We observe that ASLan++ is sufficiently expressive for the goals of the
SPaCIoS problem cases; however, in a number of cases SATMC and the other
AVANTSSAR verification back-ends failed to verify the goals. This can be
due to either the complexity of the goal or the complexity of the model (or
both). It turns out that in a number of cases we can rewrite the goals into
an “equivalent” simpler goal that is amenable to automated verification. We
are currently looking at different levels of abstraction for simplifying the
models. Obviously, the verification back-ends also need to be strengthened
and extended.

In the future, we intend to work on the following three issues: (1) finding
patterns for simplifying security goals, (2) finding suitable levels of abstrac-
tion for models, so that the models would be amenable to automated veri-
fication and would also be sufficiently detailed for the purpose of test case
generation, and (3) extending the verification back-ends of AVANTSSAR, in
particular SATMC, in order to handle the problem cases of SPaCIoS.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 44/62

References
[1] Automated VAlidatioN of Trust and Security of Service-oriented ARchi-

tectures. http://www.avantssar.eu/.

[2] AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and
tutorial, 2011. Available at http://www.avantssar.eu.

[3] AVISPA. AVISPA v1.1 User Manual. http://www.avispa-project.
org, 2006.

[4] Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A.
Gunter. What packets may come: automata for network monitoring. In
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’01, pages 206–219, New York,
NY, USA, 2001. ACM.

[5] Robert M. Hierons. Controllable testing from nondeterministic fi-
nite state machines with multiple ports. IEEE Trans. Computers,
60(12):1818–1822, 2011.

[6] Robert M. Hierons and Hasan Ural. Overcoming controllability problems
with fewest channels between testers. Computer Networks, 53(5):680–
690, 2009.

[7] Gavin Lowe. A hierarchy of authentication specifications. In Pro-
ceedings of the 10th IEEE Computer Security Foundations Workshop
(CSFW’97), pages 31–43. IEEE Computer Society Press, 1997.

[8] Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim
A. C. Willemse. Synchronizing asynchronous conformance testing. In
Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors, SEFM,
volume 7041 of Lecture Notes in Computer Science, pages 334–349.
Springer, 2011.

[9] SPaCIoS. Deliverable 2.1.1: Analysis of the relevant concepts used in
the case studies: applicable security concepts, security goals and attack
behaviours, 2011.

[10] SPaCIoS. Deliverable 5.1: Proof of Concept and Tool Assessment v.1,
2011.

[11] SPaCIoS. Deliverable 2.1.2: Modeling security-relevant aspects in the
IoS, 2012.

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

http://www.avantssar.eu/
http://www.avantssar.eu
http://www.avispa-project.org
http://www.avispa-project.org

D2.3.1: Definition and Description of Security Goals 45/62

A LTL Definitions (recap)

Operator ASLan++ connective Explanation
¬ !f negation
= f_1 = f_2 equality
6= f_1 != f_2 inequality
∧ f_1 & f_2 conjunction
∨ f_1 | f_2 disjunction
⇒ f_1 => f_2 implication
∀ forall V_1 ... V_n.f universal quantification
∃ exists V_1 ... V_n.f existential quantification

neXt X(f) in the next state1

Yesterday Y(f) in the previous state1

Finally <>(f) at some time in the future2

Once <->(f) at some time in the past
Globally [](f) always

Historically [-](f) at all times in the past
Until U(f_1,f_2) f1 holds until f2 holds

and f2 will eventually hold
Release R(f_1,f_2) f2 holds until and including

the point where f1 first becomes
true; if f1 never becomes true
f2 must remain true forever.

Since S(f_1,f_2) f2 was true at least once in the
past and since then f1 holds

Table 3: LTL operators for specifying goals

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 46/62

Operator Syntax π satisfies formula ϕ at time i (π, i |= ϕ)
Globally �a (∀j ≥ i)π, j |= a
Eventually 3a (∃j ≥ i)π, j |= a

Until aUb (∃j ≥ i)π, j |= b and
(∀k ∈ {i, . . . , j − 1})π, k |= a

Next time #a π, i+ 1 |= a
Globally in the past �−1a (∀j ∈ {0, . . . , i})π, j |= a
Eventually in the past 3−1a (∃j ∈ {0, . . . , i})π, j |= a

Since aSb (∃j ∈ {0, . . . , i})π, j |= b and
(∀k ∈ {j + 1, . . . , i})π, k |= a

Last time #−1a i > 0 and π, i− 1 |= a

Table 4: Non-strict LTL syntax and semantics

B OAuth 2.0 Formal Model
specification OAuth
channel_model ACM

entity Environment {
types
int < message ;

%% Common
uri < message ;
uri_path < message ;
method < message ;
code < message ;

%% HTTP protocol
http_element < message ;
data < message ;

%% OAuth2 .0
client_id < message ;
client_secret < message ;
scope < message ;
state < message ;
authz_code < message ;
access_token < message ;
oauth_authz_message < http_element ;
oauth_tok_message < http_element ;
oauth_token < http_element ;

symbols
%% NIL values
nil : message ;
nil_agent : agent ;
nil_uri : uri;
nil_http_element : http_element ;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 47/62

%% HTTP protocol
get , post : method ;
code_30x , code_200 : code;

%% Agents
app , u1 , fb : agent ;

app_clientid , badapp_clientid : client_id ;
nonpublic app_secr : client_secret ;
badapp_secr : client_secret ;
app_uri_path , badapp_uri_path : uri_path ;
app_red_uri_path , badapp_red_uri_path :

uri_path ;
app_scope , badapp_scope : scope ;

u1_userdata_path : uri_path ;
nonpublic u1_userdata : data;

fb_az_ep , fb_tok_ep : uri_path ;

running (agent , client_id , authz_code , client_secret):
fact;

witness (agent , client_id , authz_code , client_secret):
fact;

%% Channels
CChannels : agent . channel . channel set;
ch_u2app_1s1 , ch_app2u_1s1 ,
% ch_u2app_2s1 , ch_app2u_2s1 ,
% ch_u2fb_s1 , ch_fb2u_s1 ,
ch_app2fb_s1 , ch_fb2app_s1 ,
ch_u2i_1s2 , ch_i2u_1s2 ,
% ch_u2i_2s2 , ch_i2u_2s2 ,
% ch_u2fb_s2 , ch_fb2u_s2 ,
ch_i2fb_s2 , ch_fb2i_s2 ,
ch_u2fb , ch_fb2u : channel ;

%% Intruder
fake_ac : authz_code ;
fake_at : oauth_token ;

%%%% Symbols for messages

%% Common
uri(agent , uri_path) : uri;
resource (data) : http_element ;

%% HTTP protocol
httpRequest (method , uri , http_element , http_element)

: message ;
httpResponse (code , uri , http_element , http_element)

: message ;

%% OAuth 2.0 protocol

% authzRequest (client_id , redirect_uri , scope ,
state)

% authzResponse (authz_code , state)
% accessTokenRequest (client_id , client_secret ,

authz_code , redirect_uri)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 48/62

% accessTokenResponse (access_token , expires_in ,
refresh_token , scope)

% accessToken (int)
authzRequest (client_id , uri , scope , state)

: oauth_authz_message ;
authzResponse (authz_code , state) : oauth_authz_message ;
accessTokenRequest (client_id , client_secret ,

authz_code , uri) : oauth_tok_message ;
accessTokenResponse (access_token) : oauth_tok_message ;
accessToken (access_token) : oauth_token ;

%%%% Variables
RegisteredApp : client_id .uri. client_secret

set;
SocialGraph : agent .uri.data set;
AuthzCodes : client_id . agent . authz_code

set;
AccessTokens : client_id . agent . access_token

set;

link(channel , channel) : fact;

% %%%%%%%%%%%%%%% SESSION %%%%%%%%%%%%%%%%
entity Session (
App , U, FB : agent ,
App_URI_Path : uri_path ,
App_Red_URI_Path : uri_path ,
App_ClientID : client_id ,
App_Secr : client_secret ,
UserData_URI : uri_path ,
Scope : scope ,
RegisteredApp : client_id .uri. client_secret

set ,
SocialGraph : agent .uri.data set ,
AuthzCodes : client_id . agent . authz_code

set ,
AccessTokens : client_id . agent . access_token

set ,
Ch_U2App_1 , Ch_App2U_1 ,
Ch_U2App_2 , Ch_App2U_2 ,
Ch_U2FB , Ch_FB2U ,
Ch_App2FB , Ch_FB2App : channel ,
Channels : agent . channel . channel set
) {

% %%%%%%%%%%%%%%% OAUTH CLIENT %%%%%%%%%%%%%%%%
entity Application (
Actor , U, FB : agent ,
App_URI_Path : uri_path ,
App_Red_URI_Path : uri_path ,
App_ClientID : client_id ,
App_Secr : client_secret ,
UserData_URI : uri_path ,
Scope : scope ,
Ch_U2App_1 , Ch_App2U_1 ,
Ch_U2App_2 , Ch_App2U_2 ,
Ch_App2FB , Ch_FB2App : channel
) {
symbols
State : state ;
Code : authz_code ;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 49/62

Token : access_token ;
UserData : data;
RenderUserDataInPage : data;

body {
?U -Ch_U2App_1 -> Actor : httpRequest (get ,

uri(Actor , App_URI_Path), nil_http_element ,
nil_http_element);

%% --- BEGIN OF OAUTH2 .0 --- %%
State := fresh ();
%% Authorization request
Actor -Ch_App2U_1 -> U : httpResponse (code_30x ,

uri(FB , fb_az_ep), authzRequest (App_ClientID ,
uri(Actor , App_Red_URI_Path), Scope , State), nil_http_element);

%% Authorization response
?U -Ch_U2App_2 -> Actor : httpRequest (get ,

uri(Actor , App_Red_URI_Path), authzResponse (? Code ,
State), nil_http_element);

running (FB , App_ClientID ,Code , App_Secr);
%% Access Token Request
% Access Token :
% facebook doesn ’t clarify whether this

% request is done in POST or GET. Current OAuth2
% draft says POST.

Actor -Ch_App2FB -> FB : httpRequest (post ,
uri(FB , fb_tok_ep), nil_http_element , accessTokenRequest (App_ClientID ,
App_Secr , Code , uri(Actor , App_Red_URI_Path)));

%% Access Token Response
FB -Ch_FB2App -> Actor : httpResponse (code_200 ,

nil_uri , accessTokenResponse (? Token), nil_http_element);

% Accessing protected resource
Actor -Ch_App2FB -> FB : httpRequest (get ,

uri(FB , UserData_URI), accessToken (Token),
nil_http_element);

FB -Ch_FB2App -> Actor : httpResponse (code_200 ,
nil_uri , nil_http_element , resource (? UserData));

%% --- END OF OAUTH2 .0 --- %%
RenderUserDataInPage := fresh ();
Actor -Ch_App2U_2 -> U : httpResponse (code_200 ,

nil_uri , nil_http_element , resource (RenderUserDataInPage));

%% Hack to have the request in the last
step

App_URI_Path := App_authn_User_on_uri :(App_URI_Path);

}
}

% %%%%%%%%%%%%%%% OAUTH USER - AGENT %%%%%%%%%%%%%%%%
entity User(
Actor , App , FB : agent ,
App_URI_Path : uri_path ,
Ch_U2App_1 , Ch_App2U_1 ,
Ch_U2FB , Ch_FB2U : channel ,
Channels : agent . channel . channel set
) {

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 50/62

symbols
Red_URI : uri_path ;
AzReq : authzRequest (message , uri(agent ,

uri_path), scope , state);
AzResp : authzResponse (authz_code , state);
RenderUserDataInPage : data;
Code : authz_code ;
State : state ;
Ch_U2App_2 , Ch_App2U_2 : channel ;

body {
%% App_authn_User_on_uri :(uri(App , App_URI_Path))
Actor -Ch_U2App_1 -> App : httpRequest (get ,

uri(App , App_authn_User_on_uri :(App_URI_Path)),
nil_http_element , nil_http_element);

%% --- BEGIN OF OAUTH2 .0 --- %%
%% Authorization Request (1): redirection
%% to Facebook
App -Ch_App2U_1 -> Actor : httpResponse (code_30x ,

uri (?FB , ? Red_URI), ?AzReq , nil_http_element);

%% User authentication and granting access
% - how to deal with that ?!?!?!

%% Authorization Request (2): redirected
%% to FB
Actor -Ch_U2FB -> FB : httpRequest (get , uri(FB ,

Red_URI), AzReq , nil_http_element);
%% Authorization Response (1): redirection
%% to the client
select {
on(FB -Ch_FB2U -> Actor : httpResponse (code_30x ,

uri (?App , ? Red_URI), ?AzResp , nil_http_element)
&

Channels -> contains ((? App , ? Ch_U2App_2 , ? Ch_App2U_2))):
{

%% Authorization Response (2): redirected
%% to the client
Actor -Ch_U2App_2 -> App : httpRequest (get ,

uri(App , Red_URI), AzResp , nil_http_element);
%% --- END OF OAUTH2 .0 --- %%
App -Ch_App2U_2 -> Actor : httpResponse (code_200 ,

nil_uri , nil_http_element , resource (? RenderUserDataInPage));
% assert finished : false ;
}
}
}
}

% %%%%%%%%%%%%%%% Facebook %%%%%%%%%%%%%%%%
entity Facebook (
Actor , U, App : agent ,
RegisteredApp : client_id .uri. client_secret

set ,
SocialGraph : agent .uri.data set ,
AuthzCodes : client_id . agent . authz_code

set ,
AccessTokens : client_id . agent . access_token

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 51/62

set ,
Ch_U2FB , Ch_FB2U ,
Ch_App2FB , Ch_FB2App : channel

) {

symbols
UserData_URI : uri_path ;
UserData : data;
App_ClientID : client_id ;
App_Secr : client_secret ;
AnyApp : agent ;
App_Red_URI_Path : uri_path ;
Code : authz_code ;
Token : access_token ;
Scope : scope ;
State : state ;

body {
select {
%% Authorization Request : U is redirected
%% with an Authorization Request
on(U -Ch_U2FB -> Actor : httpRequest (get ,

uri(Actor , fb_az_ep), authzRequest (? App_ClientID ,
uri (?App , ? App_Red_URI_Path), ?Scope , ? State), nil_http_element) &

% Note: user is authenticated (no guard)
% 2) User is asked to grant /deny App to
% access his data
SocialGraph -> contains ((U, uri(Actor , ? UserData_URI),

? UserData)) &
RegisteredApp -> contains ((? App_ClientID ,

uri (?App , ? App_Red_URI_Path), ? App_Secr))):
{ % App_Secr not checked here because there ’s no App authentication

%(see next step)
% secret_AC :(Code) := fresh ();
Code := fresh ();
AuthzCodes ->add ((App_ClientID , U, Code));
Actor -Ch_FB2U -> U : httpResponse (code_30x ,

uri(App , App_Red_URI_Path), authzResponse (Code ,
State), nil_http_element);

select {
%% Access Token Request : App presents the
%% Code asking for a Token
on (? AnyApp -Ch_App2FB -> Actor : httpRequest (post ,

uri(Actor , fb_tok_ep), nil_http_element ,
accessTokenRequest (? App_ClientID , ?App_Secr , ?Code ,
uri (?App , ? App_Red_URI_Path))) &

% App is authenticated && his redirection
% URI is verified)
RegisteredApp -> contains ((? App_ClientID ,

uri (?App , ? App_Red_URI_Path), ? App_Secr))
&

AuthzCodes -> contains ((? App_ClientID , ?U,
?Code))): {

witness (Actor , App_ClientID , Code , App_Secr);
Token := fresh ();
AccessTokens ->add ((App_ClientID , U, Token));
Actor -Ch_FB2App -> AnyApp : httpResponse (code_200 ,

nil_uri , accessTokenResponse (Token), nil_http_element);
select {

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 52/62

%% The application is accessing to a resource
%% showing a token
on (? AnyApp -Ch_App2FB -> Actor : httpRequest (get ,

uri(Actor , ? UserData_URI), accessToken (? Token),
nil_http_element) &

%% Token is checked , UserData_URI has to
%% be a resource that belongs to the user
AccessTokens -> contains ((? App_ClientID , ?U,

? Token)) &
SocialGraph -> contains ((?U, uri(Actor , ? UserData_URI),

? UserData))): {
Actor -Ch_FB2App -> AnyApp : httpResponse (code_200 ,

nil_uri , nil_http_element , resource (UserData));

}
}
}
}
}
}
}
}

body {

new Application (App , U, FB , App_URI_Path ,
App_Red_URI_Path , App_ClientID , App_Secr ,
UserData_URI , Scope , Ch_U2App_1 , Ch_App2U_1 ,
Ch_U2App_2 , Ch_App2U_2 , Ch_App2FB , Ch_FB2App);
new User(U, App , FB , App_URI_Path ,
Ch_U2App_1 , Ch_App2U_1 , Ch_U2FB , Ch_FB2U , Channels);
new Facebook (FB , U, App , RegisteredApp ,
SocialGraph , AuthzCodes , AccessTokens ,
Ch_U2FB , Ch_FB2U , Ch_App2FB , Ch_FB2App);
}
goals
Client_Authentication_ACF : forall X Y Z

W .[]((witness (X, Y, Z, W)) => <->(running (X,
Y, Z, W)));

App_authn_User_on_uri :(_) U *-> App;
% C_on_res :(_) C *-> App;

}
body {
%% channel properties
% unilateral_conf_auth (ch_u2app_s1 , ch_app2u_s1 ,
% U, App);
confidential_to (ch_u2app_1s1 , app);
authentic_on (ch_app2u_1s1 , app);
weakly_confidential (ch_app2u_1s1);
weakly_authentic (ch_u2app_1s1);
link(ch_u2app_1s1 , ch_app2u_1s1);

confidential_to (ch_u2i_1s2 , i);
authentic_on (ch_i2u_1s2 , i);
weakly_confidential (ch_i2u_1s2);
weakly_authentic (ch_u2i_1s2);
link(ch_u2i_1s2 , ch_i2u_1s2);

% bilateral_conf_auth (ch_u2fb , ch_fb2u , U,
%FB) that gets authentic to U after her authentication

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 53/62

% using username / password
confidential_to (ch_u2fb , fb);
authentic_on (ch_fb2u , fb);
confidential_to (ch_fb2u , u1);
weakly_authentic (ch_u2fb);
link(ch_u2fb , ch_fb2u);

% unilateral_auth_conf (Ch_U2App_2 , Ch_App2U_2 ,
%U, App);
% confidential_to (ch_u2app_2s1 , app);
% authentic_on (ch_app2u_2s1 , app);
% weakly_confidential (ch_app2u_2s1);
% weakly_authentic (ch_u2app_2s1);
%link(ch_u2app_2s1 , ch_app2u_2s1);

% confidential_to (ch_u2i_2s2 , i);
% authentic_on (ch_i2u_2s2 , i);
% weakly_confidential (ch_i2u_2s2);
% weakly_authentic (ch_u2i_2s2);
%link(ch_u2i_2s2 , ch_i2u_2s2);

%% FB <-> APPs
confidential_to (ch_app2fb_s1 , fb);
authentic_on (ch_fb2app_s1 , fb);
weakly_confidential (ch_fb2app_s1);
weakly_authentic (ch_app2fb_s1);
link(ch_app2fb_s1 , ch_fb2app_s1);

confidential_to (ch_i2fb_s2 , fb);
authentic_on (ch_fb2i_s2 , fb);
weakly_confidential (ch_fb2i_s2);
weakly_authentic (ch_i2fb_s2);
link(ch_i2fb_s2 , ch_fb2i_s2);

RegisteredApp := { (app_clientid , uri(app ,
app_red_uri_path), app_secr),(badapp_clientid ,
uri(i, badapp_red_uri_path), badapp_secr) };
% application app is registered
%at FB , it provides an OAuth2 end - point at app_red_uri_path
%and it is sharing app_secr with FB

SocialGraph := { (u1 , uri(fb , u1_userdata_path),
u1_userdata) }; % user u, owns userdata available at userdata_uri

AuthzCodes := {}; % shared memory
AccessTokens := {}; % shared memory
CChannels := {(app , ch_u2app_1s1 , ch_app2u_1s1),
(i, ch_u2i_1s2 , ch_i2u_1s2)};
new Session (app , u1 , fb , app_uri_path , app_red_uri_path , app_clientid ,
app_secr , u1_userdata_path , app_scope ,
RegisteredApp , SocialGraph , AuthzCodes ,
AccessTokens , ch_u2app_1s1 , ch_app2u_1s1 , ch_u2app_1s1 , ch_app2u_1s1 ,
ch_u2fb , ch_fb2u , ch_app2fb_s1 , ch_fb2app_s1 , CChannels);
new Session (i, u1 , fb , badapp_uri_path , badapp_red_uri_path ,
badapp_clientid , badapp_secr , u1_userdata_path , badapp_scope ,
RegisteredApp , SocialGraph , AuthzCodes , AccessTokens , ch_u2i_1s2 ,
ch_i2u_1s2 , ch_u2i_1s2 , ch_i2u_1s2 , ch_u2fb , ch_fb2u , ch_i2fb_s2 ,
ch_fb2i_s2 , CChannels);
}

}

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 54/62

C SAML model
specification SAML_SSO_SP_init
channel_model ACM

entity Environment {
types

int < message ;
method < message ;
code < message ;

http_element < message ;
resource < http_element ;

saml_message < message ;
saml_binding < http_element ;

symbols
%% NIL values

nil
: message ;

nil_agent
: agent ;

nil_http_element
: http_element ;

%% HTTP protocol values
get , post

: method ;
code_30x , code_200

: code;
uri_sp , uri_i

: agent ;

%% Agents
TrustedSPs

: agent set;
c, sp , idp

: agent ;

%% Channels
CChannels

: agent . channel . channel set;
% Session 1
ch_c2sp_1s1 , ch_sp2c_1s1 ,
ch_c2idp_s1 , ch_idp2c_s1

: channel ;
% Session 2
ch_c2i_1s2 , ch_i2c_1s2 ,
ch_c2idp_s2 , ch_idp2c_s2

: channel ;

%% Values for the intruder
fake_id

: int;

%% Labels
httpRequest (method , agent , http_element , http_element)

: message ;
httpResponse (code , agent , http_element , http_element)

: message ;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 55/62

htmlForm (agent , saml_binding)
: http_element ;

authnRequest (agent , agent , int)
: saml_message ;

noninvertible
signedAuthnResponse (private_key , agent , agent , agent , int):

saml_message ;
httpBinding (saml_message , agent)

: saml_binding ;
postBinding (saml_message , agent)

: saml_binding ;

link(channel , channel)
: fact;

clauses
analysis_signedAuthnResponse (K, A1 , A2 , A3 , N):

iknows (A1.A2.A3.N) :- iknows (signedAuthnResponse (K, A1 , A2 , A3 , N))
& iknows (K);

% %%%%%%%%%%%%%%% SESSION %%%%%%%%%%%%%%%%
entity Session (C, IdP , SP: agent , TrustedSPs : agent set , URI :

agent , Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2 ,
Ch_C2IdP , Ch_IdP2C : channel , Channels : agent . channel . channel set) {

% %%%%%%%%%%%%%%% CLIENT %%%%%%%%%%%%%%%%
entity Client (Actor , SP , IdP: agent , URI : agent , Ch_C2SP_1 ,

Ch_SP2C_1 , Ch_C2IdP , Ch_IdP2C : channel , Channels :
agent . channel . channel set) {

symbols
AReq: httpBinding (authnRequest (agent , agent , int), agent);
ARsp: postBinding (signedAuthnResponse

(inv(public_key), agent , agent , agent , int), agent);
AnySP : agent ;

Resource : http_element ;
Ch_C2SP_2 : channel ;
Ch_SP2C_2 : channel ;

body {
%% C-SP (1)

%URI := C_on_uri :(URI);
Actor -Ch_C2SP_1 -> SP: httpRequest (get ,

SP_authn_C_on_uri :(URI),
nil_http_element , nil_http_element);

SP -Ch_SP2C_1 -> Actor : httpResponse (code_30x , IdP , ?AReq ,
nil_http_element);

%% C-IDP
Actor -Ch_C2IdP -> IdP: httpRequest (get , IdP , AReq ,

nil_http_element);
select {

on(IdP -Ch_IdP2C -> Actor : httpResponse (code_200 ,
nil_agent , nil_http_element ,
htmlForm (? AnySP , ?ARsp)) &

Channels -> contains ((? AnySP , ?Ch_C2SP_2 , ? Ch_SP2C_2))): {
%% C-SP (2)
Actor -Ch_C2SP_2 -> AnySP : httpRequest (post , AnySP ,

nil_http_element , secret_auth :(ARsp));
AnySP -Ch_SP2C_2 -> Actor : httpResponse (code_200 , nil_agent ,

nil_http_element , SP_on_resource :(? Resource));

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 56/62

}
}

}
}

% %%%%%%%%%%%%%%% IDENTITY PROVIDER %%%%%%%%%%%%%%%%
entity IdentityProvider (Actor , C, SP: agent , TrustedSPs :

agent set , Ch_C2IdP , Ch_IdP2C : channel) {
symbols

ID : int;
URI : agent ;

body {
%% cambiare questo con On - Select
select {

on(C -Ch_C2IdP -> Actor : httpRequest (get , Actor ,
httpBinding (authnRequest (?SP , Actor , ?ID),
?URI), nil_http_element) &

TrustedSPs -> contains (? SP)): {
Actor -Ch_IdP2C -> C : httpResponse (code_200 ,

nil_agent , nil_http_element , htmlForm (
SP , postBinding (
signedAuthnResponse (inv(pk(Actor)),
SP , Actor , C, ID), URI)));

}
}

}
}

% %%%%%%%%%%%%%%% SERVICE PROVIDER %%%%%%%%%%%%%%%%
entity ServiceProvider (Actor , IdP , C: agent , URI : agent ,

Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2 : channel) {
symbols

%AnyC : agent ;
ID : int;
Resource : http_element ;

body {
C -Ch_C2SP_1 -> Actor : httpRequest (get ,
URI , nil_http_element , nil_http_element);

ID := fresh ();
Actor -Ch_SP2C_1 -> C : httpResponse (code_30x , IdP , httpBinding (

authnRequest (Actor , IdP , ID), URI), nil_http_element);

C -Ch_C2SP_2 -> Actor : httpRequest (post , Actor ,
nil_http_element , secret_auth :(postBinding (
signedAuthnResponse (inv(pk(IdP)), Actor , IdP , C, ID),
URI)));
% assert finished : false ;

Resource := fresh ();
Actor -Ch_SP2C_2 -> C : httpResponse (code_200 , nil_agent ,

nil_http_element , SP_on_resource :(Resource));

% assert finished : false ;
SP_authn_C_on_uri :(URI) := URI;

}
}
body {

%% channel properties
% unilateral_conf_auth (Ch_C2SP_1 , Ch_SP2C_1 , C, SP);
confidential_to (Ch_C2SP_1 , SP);

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 57/62

authentic_on (Ch_SP2C_1 , SP);
weakly_confidential (Ch_SP2C_1);
weakly_authentic (Ch_C2SP_1);
link(Ch_C2SP_1 , Ch_SP2C_1);

% bilateral_conf_auth (Ch_C2IdP , Ch_IdP2C , C, SP)
%that gets authentic to C after
%her authentication using username / password
confidential_to (Ch_C2IdP , IdP);
authentic_on (Ch_IdP2C , IdP);
confidential_to (Ch_IdP2C , C);
weakly_authentic (Ch_C2IdP);
link(Ch_C2IdP , Ch_IdP2C);

% unilateral_auth_conf (Ch_C2SP_2 , Ch_SP2C_2 , C, SP);
confidential_to (Ch_C2SP_2 , SP);
authentic_on (Ch_SP2C_2 , SP);
weakly_confidential (Ch_SP2C_2);
weakly_authentic (Ch_C2SP_2);
link(Ch_C2SP_2 , Ch_SP2C_2);

%% a new session is built
new Client (C, SP , IdP , URI , Ch_C2SP_1 , Ch_SP2C_1 ,

Ch_C2IdP , Ch_IdP2C , Channels);
new IdentityProvider (IdP , C, SP , TrustedSPs ,

Ch_C2IdP , Ch_IdP2C);
new ServiceProvider (SP , IdP , C, URI , Ch_C2SP_1 , Ch_SP2C_1 ,

Ch_C2SP_2 , Ch_SP2C_2);
}

goals
SP_authn_C_on_uri :(_) C *-> SP;
SP_on_resource :(_) SP *-> C;
SP_on_resource :(_) {SP ,C};
secret_auth :(_){SP ,C};

}
body {

TrustedSPs := {sp , i};
CChannels := {(sp , ch_c2sp_1s1 , ch_sp2c_1s1),
(i, ch_c2i_1s2 , ch_i2c_1s2)};

%% Sessions
new Session (c, idp , sp , TrustedSPs , uri_sp , ch_c2sp_1s1 , ch_sp2c_1s1 ,

ch_c2sp_1s1 , ch_sp2c_1s1 , ch_c2idp_s1 , ch_idp2c_s1 , CChannels);
% honest IdP and SP

new Session (c, idp , i , TrustedSPs , uri_i , ch_c2i_1s2 ,
ch_i2c_1s2 , ch_c2i_1s2 , ch_i2c_1s2 , ch_c2idp_s2 ,
ch_idp2c_s2 , CChannels);
% honest C talking to i(SP)

}

}

D Infobase model
% @verbatim (Formalization of the Infobase case study)
% @modeler (Alberto Calvi , UniVr , 2011)
% @modeler (Marco Rocchetto , UniVr , 2011)
% @modeler (David von Oheimb , Siemens AG , 2012)

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 58/62

% @clatse (--lvl 1)

% Assumptions made while modeling this scenario :
% A_1) a User has already registered in the system
% and has a defined UserName and Password .
% A_2) the User of A_1 has been also assigned to
% a specific "role"

% %%%

specification Infobase_Scene1
channel_model CCM

entity Environment {

types
usr < text;
pwd < text;
role < text;
cookie < text;
request < message ;
response < message ;

symbols
usr1 ,
usr2: usr;
role1 ,
role2 : role;
request1 ,
request2 : request ;

repository : agent ;

% the databases need to be shared by all sessions .
nonpublic loginDB : (usr ,pwd ,role) set;
nonpublic cookiesDB : cookie set;

cookie (usr ,role ,text): cookie ;
nonpublic noninvertible can_exec (role , request): fact;

entity Session (UserIP :agent , UserName :usr , Role:role , Request : request) {

symbols
Password : pwd;
nonpublic noninvertible checkPermissions (usr , request): fact;
nonpublic noninvertible checkPermissions_dishonest (request): fact;
nonpublic answerOn (request): response ;
nonpublic noninvertible got(usr , response): fact;
nonpublic noninvertible dishonest_usr (usr): fact;

% needed to avoid spurious secrecy attacks

clauses
permission (Us ,Pwd ,Ro ,Req):

checkPermissions (Us ,Req) :-
loginDB -> contains ((Us ,Pwd ,Ro)) & Ro -> can_exec (Req);

% if a User has a given Password and Role
% (checked via " contains ")
% and this role is given the right to for
% the given Request (via " can_exec ")
% then the User has the permission for the
% Request to the repository (checkPermissions)
permission_dishonest (Us ,Req):

checkPermissions_dishonest (Req) :-

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 59/62

dishonest_usr (Us) & checkPermissions (Us ,Req);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% the Client entity

entity Client (UserName : usr , Password : pwd , Request : request ,
Actor , Repository : agent) {

symbols
Cookie : cookie ;
Answer : response ;

body {
% sends his/her name and password to the Repository
Actor ->* Repository : Actor . UserName . secret_Password :(Password);
% Note that the current agent name (Actor) is used as the UserIP .
% The model should allow the intruder to spoof UserIPs ,
% and indeed it does because the agent names are public .

% the repository login service responds to
% the login request with a cookie
% (after the Repository forwards the user name and password)
select { on (repository *->* Actor : secret_Cookie :(? Cookie) &

? Cookie = cookie (UserName ,? ,?)): {} }
% A check of the UserName in the cookie is needed
% to avoid silly attack

%%% for attack scenario cookie of honest user leaked /disclosed ,
%%% uncomment the following line:

% iknows (Cookie);
%%% it would be great to have automatic means for doing such muations

% sends to the repository frontend the request and a cookie
% that gives him access to the repository
Actor *->* repository : Cookie . request_integrity :(Request);
% for the Auth. goal (SP2)

% the Repository sends back to the user the answer
% of the repository
% To avoid replay of answer that does not fit to request ,
% we added " Request ":
repository *->* Actor : Request .? Answer ;
UserName ->got(Answer);

%%% for executability test , uncomment the following line:
% assert reached_breakpoint1 : false ;

}
} %% end of Client entity

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% the online Repository entity

entity Repository (UserIP , Actor : agent) {

symbols
UserName : usr;
Password : pwd;
Role : role;
Request : request ;
Answer : response ;

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 60/62

Nonce : text;
Cookie : cookie ;
Count : nat;

body {
% it would be more realistic to have a main loop with " while (true)"
% but we do use this variant because of
% modelchecking performance problems .
% The loop below allows for two rounds per Repository instance ,
% which should be sufficient .

% translation optimization : not using " Count := 0"
% here and using "?" in the next line saves use one ASLan rule
while (Count != succ(succ (?))) {
select {

%% Case 1: login service receives the user request
%% and generation of a new cookie for the session

% receives authentication data from the user
on (? ->* Actor : ? UserIP .? UserName .? Password &
% cannot require secret_Password in Repository
% as this would lead to spurious attack

% anyone might try to authenticate as user

% checks if the data are available in the database
%% " select .. on" is more efficient to model - check than "if"

loginDB -> contains ((? UserName ,? Password ,? Role))): {
% At this point , we have checked , using the password ,
% that the user is legitimate .
% With the query , we extract the role of the legitimate user.
% Yet since the user may still be dishonest ,
% the UserIP may be forged , and therefore
% we do not state secret_Password :(Password) here ,
% as this implicitly relies on UserIP .
% In this model , it is sufficient to state
% secret_Password :(Password) for the Client .

% creates the cookie and sends it back to the user
Nonce := fresh ();
Cookie := secret_Cookie :(cookie (UserName ,Role , Nonce));

% adds the Cookie into the DB associated
% with the name of the user
cookiesDB ->add(Cookie);

% uses the IP address sent by the client
% to communicate the cookie to the correct user
Actor *->* UserIP : Cookie ;

}

%% Case 2: having a cookie , a user makes a request to the frontend

on (? UserIP *->* Actor : cookie (? UserName ,? Role ,? Nonce).? Request &

% checks if the user is allowed to do this request
% and if the user is linked to the cookie
checkPermissions (? UserName ,? Request) &
cookiesDB -> contains (cookie (? UserName ,? Role ,? Nonce))): {

% if the user has the right credential , then the Repository

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 61/62

% sends the request to the repository , which will return the answer
Answer := answerOn (Request);
%% shortcut for simplicity : no real Repository

Actor *->* UserIP : request_integrity :(Request). Answer ;
% for the Auth. goal (SP2)

}

% Case 3: otherwise the user is either
% a cheater who hasn ’t achieved his
% goal or a user that has an invalid
% cookie to issue the request
on (? UserIP *->* Actor : cookie (? UserName ,? Role ,? Nonce).? Request &

% checks if the user is allowed to do this request
% and if the user is linked to the cookie
checkPermissions (? UserName ,? Request) &
checkPermissions (? UserName ,? Request) &
cookiesDB -> contains (cookie (? UserName ,? Role ,? Nonce))): {

% if the user has the right credential , then the Repository
% sends the request to the repository , which will return the answer
Answer := answerOn (Request);
%% shortcut for simplicity : no real Repository

Actor *->* UserIP : request_integrity :(Request). Answer ;
% for the Auth. goal (SP2)

}

}
Count := succ(Count);
}

}
} %% end of Repository entity

body { %% of Session

% translation optimization : not using " Password := fresh ()"
% here , but distributing it into both "if" branches
% saves use one ASLan rule
% A_1) UserName has already registered in the system
% and dishonest user(s) know their password (s)
if(dishonest (UserIP)) {

Password := fresh ();
dishonest_usr (UserName);
iknows (Password);

}
else

Password := fresh ();

% A_2) UserName has been assigned to a specific "role"
loginDB ->add ((UserName ,Password ,Role));

%% User and Login Service instantiation
new Client (UserName , Password , Request ,

UserIP , repository);
new Repository (UserIP , repository);

}

goals
% SP1 .1 - confidentiality of passwords

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

D2.3.1: Definition and Description of Security Goals 62/62

% the Password must be a secret between
% any honest user and the repository login service

secret_Password :(_) {UserIP , repository };

% SP1 .2??? - confidentiality of cookies
%%% the following goal should be commented it out
%%% for cookie leak/ disclosed attack scenario :

secret_Cookie :(_) {UserIP , repository };

% SP2 - authorization constraints
% only users having appropriate permissions
% will receive answers on their requests

authorization_honest : forall Us Req.
[](Us ->got(answerOn (Req)) => checkPermissions (Us ,Req));

% This goal is similar to authorization_dishonest , but too strong :
% secret_Answer : forall Req. [](iknows (answerOn (Req)) =>
% dishonest_usr (UserName) & checkPermissions (UserName ,Req));

authorization_dishonest : forall Req.
[](iknows (answerOn (Req)) => checkPermissions_dishonest (Req));

% If the repository accepts a request from an honest user ,
% it has been issued by that user in the same session

request_integrity :(_) UserIP *-> repository ;

} %% end of Session entity

body { %% of the Environment entity

% users having the role " role1 " can execute " request1 " etc.
role1 -> can_exec (request1);
role2 -> can_exec (request2);
% translation problem : the above two statements
% are not lumped with the following ones

any UserIP . Session (UserIP , usr1 , role1 , request1)
where ! dishonest (UserIP);
% second session (with potentially dishonest user)
% needed for attack scenario

% any UserIP . Session (UserIP , usr2 , role2 , request2);
% takes too long

% new Session (i , usr2 , role2 , ?);
% does not work for SATMC
new Session (i , usr2 , role2 , request1);

}
}

%%% For XEmacs :
%%% Local Variables :
%%% tab - width : 2
%%% End:

% LocalWords : UniVr forall modelchecking frontend nat succ
% LocalWords : UserName loginDB InfobaseScene UserIP UserIPs
% LocalWords : checkPermissions createCookie cookiesDB
% LocalWords : answerOn userAuth Auth Rcv Pwd Ro Req usr pwd auth

FP7-ICT-2009-5, ICT-2009.1.4
Project No. 257876

	Introduction
	Elicitation of the security goals arising from the problem cases
	WebGoat security goals
	Authenticity
	Authorization
	Confidentiality
	Integrity

	SAML 2.0 SSO security goals
	OpenID security goals
	OAuth 2.0 security goals
	Pervasive Retail security goals
	eHealth security goals
	Tentative formalization

	Infobase security goals

	Formalizing and verifying the security goals
	WebGoat
	Authenticity
	Authorization
	Confidentiality
	Integrity
	Verification of Goals

	SAML-SSO
	Client Authentication
	Service Provider Authentication
	Confidentiality of Resource
	Confidentiality of Authentication data
	Integrity

	OpenID
	Mutual authentication
	Confidentiality
	Authorization

	OAuth 2.0
	Client Authentication
	Authorization

	Pervasive Retail
	Mutual authentication
	Secrecy
	Non repudiation
	Authorization
	Privacy
	Need to know

	Infobase
	Confidentiality of authentication data (passwords)
	Confidentiality of content stored into the repository
	Confidentiality of cookies
	Confidentiality of responses from the Repository
	Authorization of requests
	Integrity of requests

	Discussions
	Unobservable events
	Testability in asynchronous settings

	Conclusion
	References
	LTL Definitions (recap)
	OAuth 2.0 Formal Model
	SAML model
	Infobase model

